DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Direction to practical production of hydrogen by formic acid dehydrogenation with Cp*Ir complexes bearing imidazoline ligands

Abstract

In a Cp*Ir complex with a bidentate pyridyl-imidazoline ligand achieved the evolution of 1.02 m3 of H2/CO2 gases by formic acid dehydrogenation without any additives or adjustments in the solution system. Furthermore, the pyridyl-imidazoline moieties provided the optimum pH to be 1.7, resulting in high activity and stability even at very acidic conditions.

Authors:
 [1];  [2];  [1];  [3];  [4];  [2];  [2];  [5]
  1. National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.
  3. National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); CREST, Kawaguchi (Japan). Japan Science and Technology Agency
  4. CREST, Kawaguchi (Japan). Japan Science and Technology Agency; National Inst. of Advanced Industrial Science and Technology (AIST), Koriyama (Japan). Renewable Energy Research Center
  5. National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); CREST, Kawaguchi (Japan). Japan Science and Technology Agency; National Inst. of Advanced Industrial Science and Technology (AIST), Koriyama (Japan). Renewable Energy Research Center
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1335388
Report Number(s):
BNL-111792-2016-JA
Journal ID: ISSN 2044-4753; CSTAGD; R&D Project: CO026; KC0304030
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
Catalysis Science and Technology
Additional Journal Information:
Journal Volume: 6; Journal Issue: 4; Journal ID: ISSN 2044-4753
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Onishi, Naoya, Ertem, Mehmed Z., Xu, Shaoan, Tsurusaki, Akihiro, Manaka, Yuichi, Muckerman, James T., Fujita, Etsuko, and Himeda, Yuichiro. Direction to practical production of hydrogen by formic acid dehydrogenation with Cp*Ir complexes bearing imidazoline ligands. United States: N. p., 2016. Web. doi:10.1039/c5cy01865j.
Onishi, Naoya, Ertem, Mehmed Z., Xu, Shaoan, Tsurusaki, Akihiro, Manaka, Yuichi, Muckerman, James T., Fujita, Etsuko, & Himeda, Yuichiro. Direction to practical production of hydrogen by formic acid dehydrogenation with Cp*Ir complexes bearing imidazoline ligands. United States. https://doi.org/10.1039/c5cy01865j
Onishi, Naoya, Ertem, Mehmed Z., Xu, Shaoan, Tsurusaki, Akihiro, Manaka, Yuichi, Muckerman, James T., Fujita, Etsuko, and Himeda, Yuichiro. Thu . "Direction to practical production of hydrogen by formic acid dehydrogenation with Cp*Ir complexes bearing imidazoline ligands". United States. https://doi.org/10.1039/c5cy01865j. https://www.osti.gov/servlets/purl/1335388.
@article{osti_1335388,
title = {Direction to practical production of hydrogen by formic acid dehydrogenation with Cp*Ir complexes bearing imidazoline ligands},
author = {Onishi, Naoya and Ertem, Mehmed Z. and Xu, Shaoan and Tsurusaki, Akihiro and Manaka, Yuichi and Muckerman, James T. and Fujita, Etsuko and Himeda, Yuichiro},
abstractNote = {In a Cp*Ir complex with a bidentate pyridyl-imidazoline ligand achieved the evolution of 1.02 m3 of H2/CO2 gases by formic acid dehydrogenation without any additives or adjustments in the solution system. Furthermore, the pyridyl-imidazoline moieties provided the optimum pH to be 1.7, resulting in high activity and stability even at very acidic conditions.},
doi = {10.1039/c5cy01865j},
journal = {Catalysis Science and Technology},
number = 4,
volume = 6,
place = {United States},
year = {Thu Nov 10 00:00:00 EST 2016},
month = {Thu Nov 10 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 61 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst
journal, May 2008

  • Fellay, Céline; Dyson, Paul J.; Laurenczy, Gábor
  • Angewandte Chemie International Edition, Vol. 47, Issue 21, p. 3966-3968
  • DOI: 10.1002/anie.200800320

Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst
journal, July 2014

  • Bielinski, Elizabeth A.; Lagaditis, Paraskevi O.; Zhang, Yuanyuan
  • Journal of the American Chemical Society, Vol. 136, Issue 29
  • DOI: 10.1021/ja505241x

Unprecedentedly High Formic Acid Dehydrogenation Activity on an Iridium Complex with an N , N ′-Diimine Ligand in Water
journal, July 2015

  • Wang, Zhijun; Lu, Sheng-Mei; Li, Jun
  • Chemistry - A European Journal, Vol. 21, Issue 36
  • DOI: 10.1002/chem.201502086

Formic Acid Dehydrogenation with Bioinspired Iridium Complexes: A Kinetic Isotope Effect Study and Mechanistic Insight
journal, May 2014


Hydrogen generation from formic acid and alcohols using homogeneous catalysts
journal, January 2010

  • Johnson, Tarn C.; Morris, David J.; Wills, Martin
  • Chem. Soc. Rev., Vol. 39, Issue 1
  • DOI: 10.1039/B904495G

Long-range metal–ligand bifunctional catalysis: cyclometallated iridium catalysts for the mild and rapid dehydrogenation of formic acid
journal, January 2013

  • Barnard, Jonathan H.; Wang, Chao; Berry, Neil G.
  • Chemical Science, Vol. 4, Issue 3
  • DOI: 10.1039/c2sc21923a

Mechanistic Studies on the Reversible Hydrogenation of Carbon Dioxide Catalyzed by an Ir-PNP Complex
journal, December 2011

  • Tanaka, Ryo; Yamashita, Makoto; Chung, Lung Wa
  • Organometallics, Vol. 30, Issue 24
  • DOI: 10.1021/om2010172

Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst
journal, September 2011


Transfer hydrogenation of a variety of ketones catalyzed by rhodium complexes in aqueous solution and their application to asymmetric reduction using chiral Schiff base ligands
journal, March 2003

  • Himeda, Yuichiro; Onozawa-Komatsuzaki, Nobuko; Sugihara, Hideki
  • Journal of Molecular Catalysis A: Chemical, Vol. 195, Issue 1-2
  • DOI: 10.1016/S1381-1169(02)00576-9

Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage
journal, January 2015

  • Zhu, Qi-Long; Xu, Qiang
  • Energy & Environmental Science, Vol. 8, Issue 2
  • DOI: 10.1039/C4EE03690E

Towards a Practical Setup for Hydrogen Production from Formic Acid
journal, June 2013


Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure
journal, January 2012

  • Maenaka, Yuta; Suenobu, Tomoyoshi; Fukuzumi, Shunichi
  • Energy & Environmental Science, Vol. 5, Issue 6
  • DOI: 10.1039/c2ee03315a

Base-Free Production of H 2 by Dehydrogenation of Formic Acid Using An Iridium-bisMETAMORPhos Complex
journal, July 2013

  • Oldenhof, Sander; de Bruin, Bas; Lutz, Martin
  • Chemistry - A European Journal, Vol. 19, Issue 35
  • DOI: 10.1002/chem.201302230

The Hydrogen Issue
journal, December 2010


Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H 2 /O 2 Fuel Cells
journal, May 2008

  • Loges, Björn; Boddien, Albert; Junge, Henrik
  • Angewandte Chemie International Edition, Vol. 47, Issue 21
  • DOI: 10.1002/anie.200705972

Efficient Hydrogen Liberation from Formic Acid Catalyzed by a Well-Defined Iron Pincer Complex under Mild Conditions
journal, May 2013

  • Zell, Thomas; Butschke, Burkhard; Ben-David, Yehoshoa
  • Chemistry - A European Journal, Vol. 19, Issue 25
  • DOI: 10.1002/chem.201301383

CO 2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO 2 Reduction
journal, August 2015


Highly Efficient Reversible Hydrogenation of Carbon Dioxide to Formates Using a Ruthenium PNP-Pincer Catalyst
journal, April 2014

  • Filonenko, Georgy A.; van Putten, Robbert; Schulpen, Erik N.
  • ChemCatChem, Vol. 6, Issue 6
  • DOI: 10.1002/cctc.201402119

Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures
journal, March 2012

  • Hull, Jonathan F.; Himeda, Yuichiro; Wang, Wan-Hui
  • Nature Chemistry, Vol. 4, Issue 5, p. 383-388
  • DOI: 10.1038/nchem.1295

Efficient Cp*Ir Catalysts with Imidazoline Ligands for CO 2 Hydrogenation : Cp*Ir Catalysts with Imidazoline Ligands for CO
journal, November 2015

  • Xu, Shaoan; Onishi, Naoya; Tsurusaki, Akihiro
  • European Journal of Inorganic Chemistry, Vol. 2015, Issue 34
  • DOI: 10.1002/ejic.201501030

Efficient H 2 generation from formic acid using azole complexes in water
journal, January 2014

  • Manaka, Yuichi; Wang, Wan-Hui; Suna, Yuki
  • Catal. Sci. Technol., Vol. 4, Issue 1
  • DOI: 10.1039/C3CY00830D

Catalytic Generation of Hydrogen from Formic acid and its Derivatives: Useful Hydrogen Storage Materials
journal, May 2010


CO 2 Hydrogenation Catalyzed by Iridium Complexes with a Proton-Responsive Ligand
journal, February 2015

  • Onishi, Naoya; Xu, Shaoan; Manaka, Yuichi
  • Inorganic Chemistry, Vol. 54, Issue 11
  • DOI: 10.1021/ic502904q

Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage?
journal, January 2010

  • Enthaler, Stephan; von Langermann, Jan; Schmidt, Thomas
  • Energy & Environmental Science, Vol. 3, Issue 9
  • DOI: 10.1039/b907569k

Works referencing / citing this record:

Development of Effective Catalysts for Hydrogen Storage Technology Using Formic Acid
journal, September 2018

  • Onishi, Naoya; Iguchi, Masayuki; Yang, Xinchun
  • Advanced Energy Materials, Vol. 9, Issue 23
  • DOI: 10.1002/aenm.201801275

Kinetic Studies on Formic Acid Dehydrogenation Catalyzed by an Iridium Complex towards Insights into the Catalytic Mechanism of High-Pressure Hydrogen Gas Production
journal, September 2017

  • Iguchi, Masayuki; Zhong, Heng; Himeda, Yuichiro
  • Chemistry - A European Journal, Vol. 23, Issue 67
  • DOI: 10.1002/chem.201702969

Picolinamide‐Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability
journal, March 2018

  • Kanega, Ryoichi; Onishi, Naoya; Wang, Lin
  • Chemistry – A European Journal, Vol. 24, Issue 69
  • DOI: 10.1002/chem.201800428

Development of an Iridium-Based Catalyst for High-Pressure Evolution of Hydrogen from Formic Acid
journal, August 2016

  • Iguchi, Masayuki; Himeda, Yuichiro; Manaka, Yuichi
  • ChemSusChem, Vol. 9, Issue 19
  • DOI: 10.1002/cssc.201600697

Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline‐Based, Proton‐Responsive Ligand
journal, December 2016


Iridium Complexes with Proton-Responsive Azole-Type Ligands as Effective Catalysts for CO 2 Hydrogenation
journal, November 2017


Highly Efficient Base-Free Dehydrogenation of Formic Acid at Low Temperature
journal, August 2018

  • Prichatz, Christoph; Trincado, Monica; Tan, Lilin
  • ChemSusChem, Vol. 11, Issue 18
  • DOI: 10.1002/cssc.201801072

Base‐Free Dehydrogenation of Aqueous and Neat Formic Acid with Iridium(III) Cp*(dipyridylamine) Catalysts
journal, November 2018


Iridium-catalyzed highly efficient chemoselective reduction of aldehydes in water using formic acid as the hydrogen source
journal, January 2017

  • Yang, Zhanhui; Zhu, Zhongpeng; Luo, Renshi
  • Green Chemistry, Vol. 19, Issue 14
  • DOI: 10.1039/c7gc01289f

Iridium-catalyzed efficient reduction of ketones in water with formic acid as a hydride donor at low catalyst loading
journal, January 2018

  • Liu, Ji-tian; Yang, Shiyi; Tang, Weiping
  • Green Chemistry, Vol. 20, Issue 9
  • DOI: 10.1039/c8gc00348c

Catalysis, kinetics and mechanisms of organo-iridium enantioselective hydrogenation-reduction
journal, January 2020

  • Mwansa, Joseph M.; Page, Michael I.
  • Catalysis Science & Technology, Vol. 10, Issue 3
  • DOI: 10.1039/c9cy02147g

Structural analysis of transient reaction intermediate in formic acid dehydrogenation catalysis using two-dimensional IR spectroscopy
journal, November 2018

  • Zhang, Yufan; Chen, Xin; Zheng, Bin
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 49
  • DOI: 10.1073/pnas.1809342115