skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the structure and stability of magnetic tower jets

Abstract

Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch models, magnetic fields dominate only at scales <~ 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models, the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform three-dimensional ideal magnetohydrodynamic adaptive mesh refinement simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Here, unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as coolingmore » and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.« less

Authors:
 [1];  [1];  [1];  [2];  [3];  [4];  [4]
  1. Univ. of Rochester, Rochester, NY (United States)
  2. Univ. Pierre et Marie Curie, Meudon (France); Ecole Normale Superieure, Paris (France)
  3. Rice Univ., Houston, TX (United States)
  4. Imperial College, London (United Kingdom)
Publication Date:
Research Org.:
Rice Univ., Houston, TX (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1334725
Grant/Contract Number:  
NA0000904
Resource Type:
Accepted Manuscript
Journal Name:
Astrophysical Journal
Additional Journal Information:
Journal Volume: 757; Journal Issue: 1; Journal ID: ISSN 0004-637X
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; 97 MATHEMATICS AND COMPUTING; ISM: jets and outflows; methods: numerical; stars: magnetic field; stars: winds, outflows

Citation Formats

Huarte-Espinosa, M., Frank, A., Blackman, E. G., Ciardi, A., Hartigan, P., Lebedev, S. V., and Chittenden, J. P. On the structure and stability of magnetic tower jets. United States: N. p., 2012. Web. doi:10.1088/0004-637X/757/1/66.
Huarte-Espinosa, M., Frank, A., Blackman, E. G., Ciardi, A., Hartigan, P., Lebedev, S. V., & Chittenden, J. P. On the structure and stability of magnetic tower jets. United States. doi:10.1088/0004-637X/757/1/66.
Huarte-Espinosa, M., Frank, A., Blackman, E. G., Ciardi, A., Hartigan, P., Lebedev, S. V., and Chittenden, J. P. Wed . "On the structure and stability of magnetic tower jets". United States. doi:10.1088/0004-637X/757/1/66. https://www.osti.gov/servlets/purl/1334725.
@article{osti_1334725,
title = {On the structure and stability of magnetic tower jets},
author = {Huarte-Espinosa, M. and Frank, A. and Blackman, E. G. and Ciardi, A. and Hartigan, P. and Lebedev, S. V. and Chittenden, J. P.},
abstractNote = {Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch models, magnetic fields dominate only at scales <~ 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models, the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform three-dimensional ideal magnetohydrodynamic adaptive mesh refinement simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Here, unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.},
doi = {10.1088/0004-637X/757/1/66},
journal = {Astrophysical Journal},
number = 1,
volume = 757,
place = {United States},
year = {2012},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Supersonic Radiatively Cooled Rotating Flows and Jets in the Laboratory
journal, January 2008


Distinguishing Propagation vs. Launch Physics of Astrophysical Jets and the Role of Experiments
journal, November 2006


Magnetohydrodynamic Stellar and Disk Winds: Application to Planetary Nebulae
journal, January 2001

  • Blackman, Eric G.; Frank, Adam; Welch, Carl
  • The Astrophysical Journal, Vol. 546, Issue 1
  • DOI: 10.1086/318253

Hydromagnetic flows from accretion discs and the production of radio jets
journal, August 1982

  • Blandford, R. D.; Payne, D. G.
  • Monthly Notices of the Royal Astronomical Society, Vol. 199, Issue 4
  • DOI: 10.1093/mnras/199.4.883

The evolution of magnetic tower jets in the laboratory
journal, May 2007

  • Ciardi, A.; Lebedev, S. V.; Frank, A.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2436479

Episodic Magnetic Bubbles and Jets: Astrophysical Implications from Laboratory Experiments
journal, January 2009


SIMULATING MAGNETOHYDRODYNAMICAL FLOW WITH CONSTRAINED TRANSPORT AND ADAPTIVE MESH REFINEMENT: ALGORITHMS AND TESTS OF THE AstroBEAR CODE
journal, May 2009

  • Cunningham, Andrew J.; Frank, Adam; Varnière, Peggy
  • The Astrophysical Journal Supplement Series, Vol. 182, Issue 2
  • DOI: 10.1088/0067-0049/182/2/519

Heating and Ionization of HI Regions
journal, September 1972


Application of Magnetohydrodynamic Disk Wind Solutions to Planetary and Protoplanetary Nebulae
journal, October 2004

  • Frank, A.; Blackman, E. G.
  • The Astrophysical Journal, Vol. 614, Issue 2
  • DOI: 10.1086/382018

Effects of Cooling on the Propagation of Magnetized Jets
journal, February 1998

  • Frank, A.; Ryu, D.; Jones, T. W.
  • The Astrophysical Journal, Vol. 494, Issue 1
  • DOI: 10.1086/311159

An unsplit Godunov method for ideal MHD via constrained transport in three dimensions
journal, April 2008


The Stability of Radiatively Cooling Jets. I. Linear Analysis
journal, July 1997

  • Hardee, Philip E.; Stone, James M.
  • The Astrophysical Journal, Vol. 483, Issue 1
  • DOI: 10.1086/304208

FLUID DYNAMICS OF STELLAR JETS IN REAL TIME: THIRD EPOCH HUBBLE SPACE TELESCOPE IMAGES OF HH 1, HH 34, AND HH 47
journal, July 2011


Magnetic Fields in Stellar Jets
journal, June 2007

  • Hartigan, Patrick; Frank, Adam; Varniere, Peggy
  • The Astrophysical Journal, Vol. 661, Issue 2
  • DOI: 10.1086/513499

Collimation, Proper Motions, and Physical Conditions in the HH 30 Jet from Hubble Space Telescope Slitless Spectroscopy
journal, May 2007

  • Hartigan, Patrick; Morse, Jon
  • The Astrophysical Journal, Vol. 660, Issue 1
  • DOI: 10.1086/513015

Formation of Semirelativistic Jets from Magnetospheres of Accreting Neutron Stars: Injection of Hot Bubbles into a Magnetic Tower
journal, January 2004

  • Kato, Y.; Hayashi, M. R.; Matsumoto, R.
  • The Astrophysical Journal, Vol. 600, Issue 1
  • DOI: 10.1086/379752

Magnetocentrifugal Launching of Jets from Accretion Disks. I. Cold Axisymmetric Flows
journal, December 1999

  • Krasnopolsky, Ruben; Li, Zhi‐Yun; Blandford, Roger
  • The Astrophysical Journal, Vol. 526, Issue 2
  • DOI: 10.1086/308023

Magnetocentrifugal Launching of Jets from Accretion Disks. II. Inner Disk‐driven Winds
journal, October 2003

  • Krasnopolsky, Ruben; Li, Zhi‐Yun; Blandford, Roger D.
  • The Astrophysical Journal, Vol. 595, Issue 2
  • DOI: 10.1086/377494

Hydromagnetic Instability in a Stellarator
journal, January 1958

  • Kruskal, M. D.; Johnson, J. L.; Gottlieb, M. B.
  • Physics of Fluids, Vol. 1, Issue 5
  • DOI: 10.1063/1.1724359

Structure and Stability of Keplerian Magnetohydrodynamic Jets
journal, April 2000

  • Lery, Thibaut; Frank, Adam
  • The Astrophysical Journal, Vol. 533, Issue 2
  • DOI: 10.1086/308683

Magnetic tower outflows from a radial wire array Z-pinch
journal, July 2005


Modeling the Large‐Scale Structures of Astrophysical Jets in the Magnetically Dominated Limit
journal, May 2006

  • Li, Hui; Lapenta, Giovanni; Finn, John M.
  • The Astrophysical Journal, Vol. 643, Issue 1
  • DOI: 10.1086/501499

Numerical simulations of magnetized jets
journal, September 1989

  • Lind, Kevin R.; Payne, David G.; Meier, David L.
  • The Astrophysical Journal, Vol. 344
  • DOI: 10.1086/167779

Poynting Jets from Accretion Disks
journal, June 2002

  • Lovelace, R. V. E.; Li, H.; Koldoba, A. V.
  • The Astrophysical Journal, Vol. 572, Issue 1
  • DOI: 10.1086/340292

Magnetic collimation by accretion discs of quasars and stars
journal, March 1996

  • Lynden-Bell, D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 279, Issue 2
  • DOI: 10.1093/mnras/279.2.389

On why discs generate magnetic towers and collimate jets
journal, June 2003


Astrophysical Explosions Driven by a Rotating, Magnetized, Gravitating Sphere
journal, August 2006

  • Matt, Sean; Frank, Adam; Blackman, Eric G.
  • The Astrophysical Journal, Vol. 647, Issue 1
  • DOI: 10.1086/507325

A magnetic switch that determines the speed of astrophysical jets
journal, July 1997

  • Meier, D. L.; Edgington, S.; Godon, P.
  • Nature, Vol. 388, Issue 6640
  • DOI: 10.1038/41034

Evidence for deceleration in the radio jets of GRS 1915+105?
journal, March 2007

  • Miller-Jones, J. C. A.; Rupen, M. P.; Fender, R. P.
  • Monthly Notices of the Royal Astronomical Society, Vol. 375, Issue 3
  • DOI: 10.1111/j.1365-2966.2007.11381.x

Kink instabilities in jets from rotating magnetic fields
journal, September 2008


The Origin and Propagation of Variability in the Outflows of Long-Duration Gamma-Ray Bursts
journal, October 2010

  • Morsony, Brian J.; Lazzati, Davide; Begelman, Mitchell C.
  • The Astrophysical Journal, Vol. 723, Issue 1
  • DOI: 10.1088/0004-637X/723/1/267

Global Radiation-Magnetohydrodynamic Simulations of Black-Hole Accretion Flow and Outflow: Unified Model of Three States
journal, June 2009

  • Ohsuga, Ken; Mineshige, Shin; Mori, Masao
  • Publications of the Astronomical Society of Japan, Vol. 61, Issue 3
  • DOI: 10.1093/pasj/61.3.L7

Numerical Simulations of Astrophysical Jets from Keplerian Disks. I. Stationary Models
journal, June 1997

  • Ouyed, Rachid; Pudritz, Ralph E.
  • The Astrophysical Journal, Vol. 482, Issue 2
  • DOI: 10.1086/304170

Jets and Large Scale Outflows: Theory Confronts the Observations
journal, January 2004


[ITAL]Hubble Space Telescope[/ITAL] Images of the HH 34 Jet and Bow Shock: Structure and Proper Motions
journal, January 2002

  • Reipurth, Bo; Heathcote, Steve; Morse, Jon
  • The Astronomical Journal, Vol. 123, Issue 1
  • DOI: 10.1086/324738

Kink instability of a non-static plasma column
journal, September 1983


Effect of Wire Diameter and Addition of an Axial Magnetic Field on the Dynamics of Radial Wire Array $Z$-Pinches
journal, April 2010

  • Suzuki-Vidal, Francisco; Lebedev, Sergey V.; Bland, Simon N.
  • IEEE Transactions on Plasma Science, Vol. 38, Issue 4
  • DOI: 10.1109/TPS.2009.2036730

A Novel Jet Model: Magnetically Collimated, Radiation-Pressure Driven Jet
journal, October 2010

  • Takeuchi, Shun; Ohsuga, Ken; Mineshige, Shin
  • Publications of the Astronomical Society of Japan, Vol. 62, Issue 5
  • DOI: 10.1093/pasj/62.5.L43

Clumps in large scale relativistic jets
journal, April 2003


Poynting Jets from Accretion Disks: Magnetohydrodynamic Simulations
journal, September 2000

  • Ustyugova, G. V.; Lovelace, R. V. E.; Romanova, M. M.
  • The Astrophysical Journal, Vol. 541, Issue 1
  • DOI: 10.1086/312890

Self-Convergence of Radiatively Cooling Clumps in the Interstellar Medium
journal, September 2010


    Works referencing / citing this record:

    Transmission line analogy for relativistic Poynting-flux jets
    journal, February 2013

    • Lovelace, R. V. E.; Kronberg, P. P.
    • Monthly Notices of the Royal Astronomical Society, Vol. 430, Issue 4
    • DOI: 10.1093/mnras/stt086

    Transmission line analogy for relativistic Poynting-flux jets
    journal, February 2013

    • Lovelace, R. V. E.; Kronberg, P. P.
    • Monthly Notices of the Royal Astronomical Society, Vol. 430, Issue 4
    • DOI: 10.1093/mnras/stt086

    Simulation of Nonrelativistic Jet Ejections During the Laboratory Studies
    journal, April 2017

    • Beskin, V. S.; Istomin, Ya. N.; Kiselev, A. M.
    • Radiophysics and Quantum Electronics, Vol. 59, Issue 11
    • DOI: 10.1007/s11141-017-9760-8

    Dawes Review 6: The Impact of Companions on Stellar Evolution
    journal, January 2017

    • De Marco, Orsola; Izzard, Robert G.
    • Publications of the Astronomical Society of Australia, Vol. 34
    • DOI: 10.1017/pasa.2016.52

    Spectroscopic studies of the parameters of plasma jets during their propagation in the background plasma on the PF-3 facility
    journal, February 2017

    • Dan’ko, S. A.; Ananyev, S. S.; Kalinin, Yu G.
    • Plasma Physics and Controlled Fusion, Vol. 59, Issue 4
    • DOI: 10.1088/1361-6587/aa5904

    On the triple-star origin of the planetary nebula Sh 2-71
    journal, August 2019

    • Jones, David; Pejcha, Ondřej; Corradi, Romano L. M.
    • Monthly Notices of the Royal Astronomical Society, Vol. 489, Issue 2
    • DOI: 10.1093/mnras/stz2293

    A synchrotron jet from a post-asymptotic giant branch star
    journal, September 2013

    • Pérez-Sánchez, A. F.; Vlemmings, W. H. T.; Tafoya, D.
    • Monthly Notices of the Royal Astronomical Society: Letters, Vol. 436, Issue 1
    • DOI: 10.1093/mnrasl/slt117

    Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities
    journal, April 2019


    Models of the Mass-ejection Histories of Pre-planetary Nebulae. III. The Shaping of Lobes by Post-AGB Winds
    journal, May 2019


    Models of the Mass-ejection Histories of Pre-planetary Nebulae. IV. Magnetized Winds and the Origins of Jets, Bullets, and FLIERs
    journal, January 2020