skip to main content

DOE PAGESDOE PAGES

Title: Carbon Nanotube-Based Membrane for Light-Driven, Simultaneous Proton and Electron Transport

Here we discuss the photon driven transport of protons and electrons over hundreds of microns through a membrane based on vertically aligned single walled carbon nanotubes (SWNTs). Electrons are photogenerated in colloidal CdSe quantum dots that have been noncovalently attached to the carbon nanotube membrane and can be delivered at potentials capable of reducing earth-abundant molecular catalysts that perform proton reduction. Proton transport is driven by the electron photocurrent and is shown to be faster through the SWNT based membrane than through the commercial polymer Nafion. Furthermore, the potential utility of SWNT membranes for solar water splitting applications is demonstrated through their excellent proton and electron transport properties as well as their ability to interact with other components of water splitting systems, such as small molecule electron acceptors.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [2] ; ORCiD logo [3]
  1. Univ. of Rochester, Rochester, NY (United States)
  2. Nazareth College, Rochester, NY (United States)
  3. Univ. of Rochester, Rochester, NY (United States); Nazareth College, Rochester, NY (United States)
Publication Date:
Grant/Contract Number:
SC0002106
Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 2; Journal Issue: 1; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Research Org:
Univ. of Rochester, Rochester, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY
OSTI Identifier:
1334624