DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Novel Solid Electrolytes for Li-Ion Batteries: A Perspective from Electron Microscopy Studies

Abstract

Solid electrolytes can simultaneously overcome two of the most formidable challenges of Li-ion batteries: the severe safety issues and insufficient energy densities. However, before they can be implemented in actual batteries, the ionic conductivity needs to be improved and the interface with electrodes must be optimized. The prerequisite for addressing these issues is a thorough understanding of the material’s behavior at the microscopic and/or the atomic level. (Scanning) transmission electron microscopy is a powerful tool for this purpose, as it can reach an ultrahigh spatial resolution. Here, we review recent electron microscopy investigations on the ion transport behavior in solid electrolytes and their interfaces. Specifically, three aspects will be highlighted: the influence of grain interior atomic configuration on ionic conductivity, the contribution of grain boundaries, and the behavior of solid electrolyte/electrode interfaces. In conclusion, based on this, the perspectives for future research will be discussed.

Authors:
 [1];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1334430
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Frontiers in Energy Research
Additional Journal Information:
Journal Volume: 4; Journal Issue: 23; Journal ID: ISSN 2296-598X
Publisher:
Frontiers Research Foundation
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lithium battery; solid electrolyte; electron microscopy; atomic resolution analysis; interface

Citation Formats

Ma, Cheng, and Chi, Miaofang. Novel Solid Electrolytes for Li-Ion Batteries: A Perspective from Electron Microscopy Studies. United States: N. p., 2016. Web. doi:10.3389/fenrg.2016.00023.
Ma, Cheng, & Chi, Miaofang. Novel Solid Electrolytes for Li-Ion Batteries: A Perspective from Electron Microscopy Studies. United States. https://doi.org/10.3389/fenrg.2016.00023
Ma, Cheng, and Chi, Miaofang. Wed . "Novel Solid Electrolytes for Li-Ion Batteries: A Perspective from Electron Microscopy Studies". United States. https://doi.org/10.3389/fenrg.2016.00023. https://www.osti.gov/servlets/purl/1334430.
@article{osti_1334430,
title = {Novel Solid Electrolytes for Li-Ion Batteries: A Perspective from Electron Microscopy Studies},
author = {Ma, Cheng and Chi, Miaofang},
abstractNote = {Solid electrolytes can simultaneously overcome two of the most formidable challenges of Li-ion batteries: the severe safety issues and insufficient energy densities. However, before they can be implemented in actual batteries, the ionic conductivity needs to be improved and the interface with electrodes must be optimized. The prerequisite for addressing these issues is a thorough understanding of the material’s behavior at the microscopic and/or the atomic level. (Scanning) transmission electron microscopy is a powerful tool for this purpose, as it can reach an ultrahigh spatial resolution. Here, we review recent electron microscopy investigations on the ion transport behavior in solid electrolytes and their interfaces. Specifically, three aspects will be highlighted: the influence of grain interior atomic configuration on ionic conductivity, the contribution of grain boundaries, and the behavior of solid electrolyte/electrode interfaces. In conclusion, based on this, the perspectives for future research will be discussed.},
doi = {10.3389/fenrg.2016.00023},
journal = {Frontiers in Energy Research},
number = 23,
volume = 4,
place = {United States},
year = {Wed Jun 08 00:00:00 EDT 2016},
month = {Wed Jun 08 00:00:00 EDT 2016}
}

Works referenced in this record:

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”
journal, January 2011

  • Buschmann, Henrik; Dölle, Janis; Berendts, Stefan
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 43
  • DOI: 10.1039/c1cp22108f

Atomic and electronic structures of the SrVO 3 -LaAlO 3 interface
journal, August 2011

  • Chi, Miaofang; Mizoguchi, Teruyasu; Martin, Lane W.
  • Journal of Applied Physics, Vol. 110, Issue 4
  • DOI: 10.1063/1.3601870

Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing
journal, November 2015

  • Chi, Miaofang; Wang, Chao; Lei, Yinkai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9925

Structure and ionic conductivity in lithium garnets
journal, January 2010

  • Cussen, Edmund J.
  • Journal of Materials Chemistry, Vol. 20, Issue 25
  • DOI: 10.1039/b925553b

Radiation damage in the TEM and SEM
journal, August 2004


Lithium Atom and A-Site Vacancy Distributions in Lanthanum Lithium Titanate
journal, April 2013

  • Gao, Xiang; Fisher, Craig A. J.; Kimura, Teiichi
  • Chemistry of Materials, Vol. 25, Issue 9
  • DOI: 10.1021/cm3041357

Grain Boundaries in a Lithium Aluminum Titanium Phosphate-Type Fast Lithium Ion Conducting Glass Ceramic: Microstructure and Nonlinear Ion Transport Properties
journal, October 2012

  • Gellert, Michael; Gries, Katharina I.; Yada, Chihiro
  • The Journal of Physical Chemistry C, Vol. 116, Issue 43
  • DOI: 10.1021/jp305309r

Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery
journal, January 2011


All-Solid-State Lithium Secondary Batteries Using LiMn[sub 2]O[sub 4] Electrode and Li[sub 2]S–P[sub 2]S[sub 5] Solid Electrolyte
journal, January 2010

  • Kitaura, Hirokazu; Hayashi, Akitoshi; Tadanaga, Kiyoharu
  • Journal of The Electrochemical Society, Vol. 157, Issue 4
  • DOI: 10.1149/1.3298441

High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si
journal, May 2011

  • Kumazaki, Shota; Iriyama, Yasutoshi; Kim, Ki-Hyun
  • Electrochemistry Communications, Vol. 13, Issue 5, p. 509-512
  • DOI: 10.1016/j.elecom.2011.02.035

Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes
journal, January 2014

  • Ma, Cheng; Chen, Kai; Liang, Chengdu
  • Energy & Environmental Science, Vol. 7, Issue 5
  • DOI: 10.1039/c4ee00382a

Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries
journal, March 2016

  • Ma, Cheng; Cheng, Yongqiang; Chen, Kai
  • Advanced Energy Materials, Vol. 6, Issue 11
  • DOI: 10.1002/aenm.201600053

Cover Picture: Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li + /H + Exchange in Aqueous Solutions (Angew. Chem. Int. Ed. 1/2015)
journal, December 2014

  • Ma, Cheng; Rangasamy, Ezhiylmurugan; Liang, Chengdu
  • Angewandte Chemie International Edition, Vol. 54, Issue 1
  • DOI: 10.1002/anie.201410930

Atomic-Scale Chemical Imaging of Composition and Bonding by Aberration-Corrected Microscopy
journal, February 2008


Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

Z-Contrast Transmission Electron Microscopy: Direct Atomic Imaging of Materials
journal, August 1992


Advanced analytical electron microscopy for lithium-ion batteries
journal, June 2015

  • Qian, Danna; Ma, Cheng; More, Karren L.
  • NPG Asia Materials, Vol. 7, Issue 6
  • DOI: 10.1038/am.2015.50

Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives
journal, January 2011

  • Quartarone, Eliana; Mustarelli, Piercarlo
  • Chemical Society Reviews, Vol. 40, Issue 5
  • DOI: 10.1039/c0cs00081g

Interface Stability in Solid-State Batteries
journal, December 2015


Interfacial Observation between LiCoO 2 Electrode and Li 2 S−P 2 S 5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy
journal, February 2010

  • Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm901819c

Lithium Lanthanum Titanates:  A Review
journal, October 2003

  • Stramare, S.; Thangadurai, V.; Weppner, W.
  • Chemistry of Materials, Vol. 15, Issue 21
  • DOI: 10.1021/cm0300516

Progress and prospective of solid-state lithium batteries
journal, February 2013


Design principles for solid-state lithium superionic conductors
journal, August 2015

  • Wang, Yan; Richards, William Davidson; Ong, Shyue Ping
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4369

Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy
journal, October 2015


Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte
journal, March 2016


Electron microscopy characterization of hot-pressed Al substituted Li7La3Zr2O12
journal, February 2012


Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale
journal, January 2015

  • Wu, Yan; Ma, Cheng; Yang, Jihui
  • Journal of Materials Chemistry A, Vol. 3, Issue 10
  • DOI: 10.1039/C4TA06856D

Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

In Situ Study of Lithiation and Delithiation of MoS 2 Nanosheets Using Electrochemical Liquid Cell Transmission Electron Microscopy
journal, July 2015


Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
journal, October 2015

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 42
  • DOI: 10.1021/acsami.5b07517

First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries
journal, January 2016

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • Journal of Materials Chemistry A, Vol. 4, Issue 9
  • DOI: 10.1039/C5TA08574H

Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries
journal, March 2016

  • Ma, Cheng; Cheng, Yongqiang; Chen, Kai
  • Advanced Energy Materials, Vol. 6, Issue 11
  • DOI: 10.1002/aenm.201600053

Cover Picture: Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li + /H + Exchange in Aqueous Solutions (Angew. Chem. Int. Ed. 1/2015)
journal, December 2014

  • Ma, Cheng; Rangasamy, Ezhiylmurugan; Liang, Chengdu
  • Angewandte Chemie International Edition, Vol. 54, Issue 1
  • DOI: 10.1002/anie.201410930

Lithium Lanthanum Titanates: A Review
journal, December 2003


Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12.
journal, December 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • ChemInform, Vol. 38, Issue 50
  • DOI: 10.1002/chin.200750009

Electron microscopy characterization of hot-pressed Al substituted Li7La3Zr2O12
journal, February 2012


Progress and prospective of solid-state lithium batteries
journal, February 2013


High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si
journal, May 2011

  • Kumazaki, Shota; Iriyama, Yasutoshi; Kim, Ki-Hyun
  • Electrochemistry Communications, Vol. 13, Issue 5, p. 509-512
  • DOI: 10.1016/j.elecom.2011.02.035

Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery
journal, January 2011


Radiation damage in the TEM and SEM
journal, August 2004


Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy
journal, October 2015


Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte
journal, March 2016


Interface Stability in Solid-State Batteries
journal, December 2015


Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
journal, October 2015

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 42
  • DOI: 10.1021/acsami.5b07517

Lithium Atom and A-Site Vacancy Distributions in Lanthanum Lithium Titanate
journal, April 2013

  • Gao, Xiang; Fisher, Craig A. J.; Kimura, Teiichi
  • Chemistry of Materials, Vol. 25, Issue 9
  • DOI: 10.1021/cm3041357

Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

Grain Boundaries in a Lithium Aluminum Titanium Phosphate-Type Fast Lithium Ion Conducting Glass Ceramic: Microstructure and Nonlinear Ion Transport Properties
journal, October 2012

  • Gellert, Michael; Gries, Katharina I.; Yada, Chihiro
  • The Journal of Physical Chemistry C, Vol. 116, Issue 43
  • DOI: 10.1021/jp305309r

Advanced analytical electron microscopy for lithium-ion batteries
journal, June 2015

  • Qian, Danna; Ma, Cheng; More, Karren L.
  • NPG Asia Materials, Vol. 7, Issue 6
  • DOI: 10.1038/am.2015.50

Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing
journal, November 2015

  • Chi, Miaofang; Wang, Chao; Lei, Yinkai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9925

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Design principles for solid-state lithium superionic conductors
journal, August 2015

  • Wang, Yan; Richards, William Davidson; Ong, Shyue Ping
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4369

Structure and ionic conductivity in lithium garnets
journal, January 2010

  • Cussen, Edmund J.
  • Journal of Materials Chemistry, Vol. 20, Issue 25
  • DOI: 10.1039/b925553b

Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives
journal, January 2011

  • Quartarone, Eliana; Mustarelli, Piercarlo
  • Chemical Society Reviews, Vol. 40, Issue 5
  • DOI: 10.1039/c0cs00081g

Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes
journal, January 2014

  • Ma, Cheng; Chen, Kai; Liang, Chengdu
  • Energy & Environmental Science, Vol. 7, Issue 5
  • DOI: 10.1039/c4ee00382a

All-Solid-State Lithium Secondary Batteries Using LiMn[sub 2]O[sub 4] Electrode and Li[sub 2]S–P[sub 2]S[sub 5] Solid Electrolyte
journal, January 2010

  • Kitaura, Hirokazu; Hayashi, Akitoshi; Tadanaga, Kiyoharu
  • Journal of The Electrochemical Society, Vol. 157, Issue 4
  • DOI: 10.1149/1.3298441

Structure and dynamics of the fast lithium ion conductor "li 7La3Zr2O12"
text, January 2011

  • Buschmann, Henrik; Dölle, Janis; Berendts, Stefan
  • Cambridge : Royal Society of Chemistry
  • DOI: 10.15488/2204

Works referencing / citing this record:

Superionic conduction in β-eucryptite: inelastic neutron scattering and computational studies
journal, January 2017

  • Singh, Baltej; Gupta, Mayanak Kumar; Mittal, Ranjan
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 23
  • DOI: 10.1039/c7cp01490b