skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal transport in suspended silicon membranes measured by laser-induced transient gratings

Abstract

Studying thermal transport at the nanoscale poses formidable experimental challenges due both to the physics of the measurement process and to the issues of accuracy and reproducibility. The laser-induced transient thermal grating (TTG) technique permits non-contact measurements on nanostructured samples without a need for metal heaters or any other extraneous structures, offering the advantage of inherently high absolute accuracy. We present a review of recent studies of thermal transport in nanoscale silicon membranes using the TTG technique. An overview of the methodology, including an analysis of measurements errors, is followed by a discussion of new findings obtained from measurements on both “solid” and nanopatterned membranes. The most important results have been a direct observation of non-diffusive phonon-mediated transport at room temperature and measurements of thickness-dependent thermal conductivity of suspended membranes across a wide thickness range, showing good agreement with first-principles-based theory assuming diffuse scattering at the boundaries. Measurements on a membrane with a periodic pattern of nanosized holes (135nm) indicated fully diffusive transport and yielded thermal diffusivity values in agreement with Monte Carlo simulations. Based on the results obtained to-date, we conclude that room-temperature thermal transport in membrane-based silicon nanostructures is now reasonably well understood.

Authors:
ORCiD logo [1];  [2];  [2];  [3];  [4];  [3]; ORCiD logo [3];  [3];  [2];  [3];  [5];  [6]; ORCiD logo [7];  [3];  [2]
  1. Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA, Applied Physics Department, CINVESTAV-Unidad Mérida, Carretera Antigua a Progreso Km 6, Cordemex, Mérida, Yucatán 97310, Mexico
  2. Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
  3. Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
  4. Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
  5. Applied Physics Department, CINVESTAV-Unidad Mérida, Carretera Antigua a Progreso Km 6, Cordemex, Mérida, Yucatán 97310, Mexico
  6. Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
  7. Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain, ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1334354
Alternate Identifier(s):
OSTI ID: 1388425; OSTI ID: 1421042
Grant/Contract Number:  
FIS2015-70862-P; 251882; SEV-2013-0295; SC0001299; FG02-09ER46577
Resource Type:
Published Article
Journal Name:
AIP Advances
Additional Journal Information:
Journal Name: AIP Advances Journal Volume: 6 Journal Issue: 12; Journal ID: ISSN 2158-3226
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; solar (photovoltaic); solar (thermal); solid state lighting; phonons; thermal conductivity; thermoelectric; defects; mechanical behavior; charge transport; spin dynamics; materials and chemistry by design; optics; synthesis (novel materials); synthesis (self-assembly); synthesis (scalable processing)

Citation Formats

Vega-Flick, A., Duncan, R. A., Eliason, J. K., Cuffe, J., Johnson, J. A., Peraud, J. -P. M., Zeng, L., Lu, Z., Maznev, A. A., Wang, E. N., Alvarado-Gil, J. J., Sledzinska, M., Sotomayor Torres, C. M., Chen, G., and Nelson, K. A. Thermal transport in suspended silicon membranes measured by laser-induced transient gratings. United States: N. p., 2016. Web. doi:10.1063/1.4968610.
Vega-Flick, A., Duncan, R. A., Eliason, J. K., Cuffe, J., Johnson, J. A., Peraud, J. -P. M., Zeng, L., Lu, Z., Maznev, A. A., Wang, E. N., Alvarado-Gil, J. J., Sledzinska, M., Sotomayor Torres, C. M., Chen, G., & Nelson, K. A. Thermal transport in suspended silicon membranes measured by laser-induced transient gratings. United States. doi:10.1063/1.4968610.
Vega-Flick, A., Duncan, R. A., Eliason, J. K., Cuffe, J., Johnson, J. A., Peraud, J. -P. M., Zeng, L., Lu, Z., Maznev, A. A., Wang, E. N., Alvarado-Gil, J. J., Sledzinska, M., Sotomayor Torres, C. M., Chen, G., and Nelson, K. A. Mon . "Thermal transport in suspended silicon membranes measured by laser-induced transient gratings". United States. doi:10.1063/1.4968610.
@article{osti_1334354,
title = {Thermal transport in suspended silicon membranes measured by laser-induced transient gratings},
author = {Vega-Flick, A. and Duncan, R. A. and Eliason, J. K. and Cuffe, J. and Johnson, J. A. and Peraud, J. -P. M. and Zeng, L. and Lu, Z. and Maznev, A. A. and Wang, E. N. and Alvarado-Gil, J. J. and Sledzinska, M. and Sotomayor Torres, C. M. and Chen, G. and Nelson, K. A.},
abstractNote = {Studying thermal transport at the nanoscale poses formidable experimental challenges due both to the physics of the measurement process and to the issues of accuracy and reproducibility. The laser-induced transient thermal grating (TTG) technique permits non-contact measurements on nanostructured samples without a need for metal heaters or any other extraneous structures, offering the advantage of inherently high absolute accuracy. We present a review of recent studies of thermal transport in nanoscale silicon membranes using the TTG technique. An overview of the methodology, including an analysis of measurements errors, is followed by a discussion of new findings obtained from measurements on both “solid” and nanopatterned membranes. The most important results have been a direct observation of non-diffusive phonon-mediated transport at room temperature and measurements of thickness-dependent thermal conductivity of suspended membranes across a wide thickness range, showing good agreement with first-principles-based theory assuming diffuse scattering at the boundaries. Measurements on a membrane with a periodic pattern of nanosized holes (135nm) indicated fully diffusive transport and yielded thermal diffusivity values in agreement with Monte Carlo simulations. Based on the results obtained to-date, we conclude that room-temperature thermal transport in membrane-based silicon nanostructures is now reasonably well understood.},
doi = {10.1063/1.4968610},
journal = {AIP Advances},
number = 12,
volume = 6,
place = {United States},
year = {2016},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1063/1.4968610

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Measuring Phonon Mean Free Path Distributions by Probing Quasiballistic Phonon Transport in Grating Nanostructures
journal, November 2015

  • Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep17131

Intrinsic lattice thermal conductivity of semiconductors from first principles
journal, December 2007

  • Broido, D. A.; Malorny, M.; Birner, G.
  • Applied Physics Letters, Vol. 91, Issue 23
  • DOI: 10.1063/1.2822891

Phase-controlled, heterodyne laser-induced transient grating measurements of thermal transport properties in opaque material
journal, January 2012

  • Johnson, Jeremy A.; Maznev, Alexei A.; Bulsara, Mayank T.
  • Journal of Applied Physics, Vol. 111, Issue 2
  • DOI: 10.1063/1.3675467

Ab initio thermal transport in compound semiconductors
journal, April 2013


Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths
journal, August 2011


Non-diffusive relaxation of a transient thermal grating analyzed with the Boltzmann transport equation
journal, September 2013

  • Collins, Kimberlee C.; Maznev, Alexei A.; Tian, Zhiting
  • Journal of Applied Physics, Vol. 114, Issue 10
  • DOI: 10.1063/1.4820572

Heat transport in silicon from first-principles calculations
journal, August 2011


Thermal conductivity of isotopically enriched 28Si: revisited
journal, August 2004

  • Kremer, R. K.; Graf, K.; Cardona, M.
  • Solid State Communications, Vol. 131, Issue 8, p. 499-503
  • DOI: 10.1016/j.ssc.2004.06.022

Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates
journal, February 1998

  • Asheghi, M.; Touzelbaev, M. N.; Goodson, K. E.
  • Journal of Heat Transfer, Vol. 120, Issue 1
  • DOI: 10.1115/1.2830059

Optical Generation and Characterization of Acoustic Waves in Thin Films: Fundamentals and Applications
journal, August 2000


Tuning Thermal Transport in Ultrathin Silicon Membranes by Surface Nanoscale Engineering
journal, February 2015

  • Neogi, Sanghamitra; Reparaz, J. Sebastian; Pereira, Luiz Felipe C.
  • ACS Nano, Vol. 9, Issue 4
  • DOI: 10.1021/nn506792d

Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon–phonon correlations
journal, October 2013

  • Trigo, M.; Fuchs, M.; Chen, J.
  • Nature Physics, Vol. 9, Issue 12
  • DOI: 10.1038/nphys2788

Four-wave mixing experiments with extreme ultraviolet transient gratings
journal, April 2015

  • Bencivenga, F.; Cucini, R.; Capotondi, F.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14341

Thermal Conductivity of Silicon from 300 to 1400°K
journal, June 1963


Thermal properties of graphene and nanostructured carbon materials
journal, August 2011

  • Balandin, Alexander A.
  • Nature Materials, Vol. 10, Issue 8, p. 569-581
  • DOI: 10.1038/nmat3064

Analysis of heat flow in layered structures for time-domain thermoreflectance
journal, December 2004

  • Cahill, David G.
  • Review of Scientific Instruments, Vol. 75, Issue 12
  • DOI: 10.1063/1.1819431

Thermal Conductivity Measurements of Ultra-Thin Single Crystal Silicon Layers
journal, June 2005

  • Liu, Wenjun; Asheghi, Mehdi
  • Journal of Heat Transfer, Vol. 128, Issue 1
  • DOI: 10.1115/1.2130403

Reduction of the thermal conductivity in free-standing silicon nano-membranes investigated by non-invasive Raman thermometry
journal, January 2014

  • Chávez-Ángel, E.; Reparaz, J. S.; Gomis-Bresco, J.
  • APL Materials, Vol. 2, Issue 1
  • DOI: 10.1063/1.4861796

Spectral mapping of thermal conductivity through nanoscale ballistic transport
journal, June 2015

  • Hu, Yongjie; Zeng, Lingping; Minnich, Austin J.
  • Nature Nanotechnology, Vol. 10, Issue 8
  • DOI: 10.1038/nnano.2015.109

Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature
journal, June 2015

  • Alaie, Seyedhamidreza; Goettler, Drew F.; Su, Mehmet
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8228

An alternative approach to efficient simulation of micro/nanoscale phonon transport
journal, October 2012

  • Péraud, Jean-Philippe M.; Hadjiconstantinou, Nicolas G.
  • Applied Physics Letters, Vol. 101, Issue 15
  • DOI: 10.1063/1.4757607

From the Casimir Limit to Phononic Crystals: 20 Years of Phonon Transport Studies Using Silicon-on-Insulator Technology
journal, May 2013

  • Marconnet, Amy M.; Asheghi, Mehdi; Goodson, Kenneth E.
  • Journal of Heat Transfer, Vol. 135, Issue 6
  • DOI: 10.1115/1.4023577

Photoexcited carrier diffusion near a Si(111) surface: Non-negligible consequence of carrier-carrier scattering
journal, December 1997


Determination of diminished thermal conductivity in silicon thin films using scanning thermoreflectance thermometry
journal, December 2010

  • Aubain, Max S.; Bandaru, Prabhakar R.
  • Applied Physics Letters, Vol. 97, Issue 25
  • DOI: 10.1063/1.3527966

Thermal transport in 2- and 3-dimensional periodic “holey” nanostructures
journal, December 2014

  • Ma, J.; Sadhu, J. S.; Ganta, D.
  • AIP Advances, Vol. 4, Issue 12
  • DOI: 10.1063/1.4904073

Engineering thermal conductance using a two-dimensional phononic crystal
journal, March 2014

  • Zen, Nobuyuki; Puurtinen, Tuomas A.; Isotalo, Tero J.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4435

Onset of nondiffusive phonon transport in transient thermal grating decay
journal, November 2011


Two-Dimensional Phononic Crystals: Disorder Matters
journal, August 2016


Impeded thermal transport in Si multiscale hierarchical architectures with phononic crystal nanostructures
journal, May 2015


Determining Phonon Mean Free Paths from Observations of Quasiballistic Thermal Transport
journal, November 2012


Optical heterodyne detection of laser-induced gratings
journal, January 1998

  • Maznev, A. A.; Nelson, K. A.; Rogers, J. A.
  • Optics Letters, Vol. 23, Issue 16
  • DOI: 10.1364/OL.23.001319

Isotope scattering of dispersive phonons in Ge
journal, January 1983


Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics
journal, January 1998

  • Goodno, Gregory D.; Dadusc, Gami; Miller, R. J. Dwayne
  • Journal of the Optical Society of America B, Vol. 15, Issue 6, 1791-1794
  • DOI: 10.1364/JOSAB.15.001791

Energy dissipation and transport in nanoscale devices
journal, March 2010


Phonon-boundary scattering in thin silicon layers
journal, September 1997

  • Asheghi, M.; Leung, Y. K.; Wong, S. S.
  • Applied Physics Letters, Vol. 71, Issue 13
  • DOI: 10.1063/1.119402

Nanoscale thermal transport. II. 2003–2012
journal, March 2014

  • Cahill, David G.; Braun, Paul V.; Chen, Gang
  • Applied Physics Reviews, Vol. 1, Issue 1
  • DOI: 10.1063/1.4832615

The conductivity of thin metallic films according to the electron theory of metals
journal, January 1938


Non-diffusive thermal transport in GaAs at micron length scales
journal, October 2015

  • Johnson, Jeremy A.; Eliason, Jeffrey K.; Maznev, Alexei A.
  • Journal of Applied Physics, Vol. 118, Issue 15
  • DOI: 10.1063/1.4933285

Phonon scattering in silicon films with thickness of order 100 nm
journal, May 1999

  • Ju, Y. S.; Goodson, K. E.
  • Applied Physics Letters, Vol. 74, Issue 20
  • DOI: 10.1063/1.123994

Quantifying Surface Roughness Effects on Phonon Transport in Silicon Nanowires
journal, April 2012

  • Lim, Jongwoo; Hippalgaonkar, Kedar; Andrews, Sean C.
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl3005868

Reduction of thermal conductivity in phononic nanomesh structures
journal, July 2010

  • Yu, Jen-Kan; Mitrovic, Slobodan; Tham, Douglas
  • Nature Nanotechnology, Vol. 5, Issue 10
  • DOI: 10.1038/nnano.2010.149

Note on the conduction of heat in crystals
journal, June 1938


Variational approach to solving the spectral Boltzmann transport equation in transient thermal grating for thin films
journal, July 2016

  • Chiloyan, Vazrik; Zeng, Lingping; Huberman, Samuel
  • Journal of Applied Physics, Vol. 120, Issue 2
  • DOI: 10.1063/1.4955164

Simultaneous Thermoelectric Property Measurement and Incoherent Phonon Transport in Holey Silicon
journal, December 2015


Increase in elastic anisotropy of single crystal tungsten upon He-ion implantation measured with laser-generated surface acoustic waves
journal, October 2016

  • Duncan, R. A.; Hofmann, F.; Vega-Flick, A.
  • Applied Physics Letters, Vol. 109, Issue 15
  • DOI: 10.1063/1.4964709

Growth of native oxide on a silicon surface
journal, August 1990

  • Morita, M.; Ohmi, T.; Hasegawa, E.
  • Journal of Applied Physics, Vol. 68, Issue 3, p. 1272-1281
  • DOI: 10.1063/1.347181

A novel contactless technique for thermal field mapping and thermal conductivity determination: Two-Laser Raman Thermometry
journal, March 2014

  • Reparaz, J. S.; Chavez-Angel, E.; Wagner, M. R.
  • Review of Scientific Instruments, Vol. 85, Issue 3
  • DOI: 10.1063/1.4867166

Monte Carlo study of non-diffusive relaxation of a transient thermal grating in thin membranes
journal, February 2016

  • Zeng, Lingping; Chiloyan, Vazrik; Huberman, Samuel
  • Applied Physics Letters, Vol. 108, Issue 6
  • DOI: 10.1063/1.4941766

In-plane thermal conductivity determination through thermoreflectance analysis and measurements
journal, October 2011

  • Aubain, Max S.; Bandaru, Prabhakar R.
  • Journal of Applied Physics, Vol. 110, Issue 8
  • DOI: 10.1063/1.3647318

Reconstructing phonon mean-free-path contributions to thermal conductivity using nanoscale membranes
journal, June 2015


Transport regimes in quasiballistic heat conduction
journal, March 2014


Nanoscale thermal transport
journal, January 2003

  • Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.
  • Journal of Applied Physics, Vol. 93, Issue 2, p. 793-818
  • DOI: 10.1063/1.1524305

Anisotropic failure of Fourier theory in time-domain thermoreflectance experiments
journal, October 2014

  • Wilson, R. B.; Cahill, David G.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6075