skip to main content

DOE PAGESDOE PAGES

Title: Development of Holmium-163 electron-capture spectroscopy with transition-edge sensors

Calorimetric decay energy spectroscopy of electron-capture-decaying isotopes is a promising method to achieve the sensitivity required for electron neutrino mass measurement. The very low total nuclear decay energy (Q EC < 3 keV) and short half-life (4570 years) of 163Ho make it attractive for high-precision electron-capture spectroscopy (ECS) near the kinematic endpoint, where the neutrino momentum goes to zero. In the ECS approach, an electron-capture-decaying isotope is embedded inside a microcalorimeter designed to capture and measure the energy of all the decay radiation except that of the escaping neutrino. We have developed a complete process for proton irradiation-based isotope production, isolation, and purification of 163Ho. We have developed transition-edge sensors for this measurement and methods for incorporating 163Ho into high-resolution microcalorimeters, and have measured the electron-capture spectrum of 163Ho. Finally, we present our work in these areas and discuss the measured spectrum and its comparison to current theory.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [2] ;  [2] ;  [2] ;  [3] ;  [3]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. National Institute of Standards and Technology, Boulder, CO (United States)
  3. Univ. of Wisconsin, Madison, WI (United States)
Publication Date:
Report Number(s):
LA-UR-15-27688
Journal ID: ISSN 0022-2291
Grant/Contract Number:
AC52-06NA25396
Type:
Accepted Manuscript
Journal Name:
Journal of Low Temperature Physics
Additional Journal Information:
Journal Volume: 184; Journal Issue: 3-4; Journal ID: ISSN 0022-2291
Publisher:
Plenum Press
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS
OSTI Identifier:
1334142