DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Intrinsic low thermal conductivity in weakly ionic rocksalt structures

Abstract

A fundamental challenge in thermoelectric (TE) material research is meeting the simultaneous requirements of high carrier mobility and low thermal conductivity. Simple crystal structures are ideal for maintaining high carrier mobility, but they usually have high thermal conductivity. Here we show by first-principles lattice dynamics and Boltzmann transport calculations that weakly ionic rocksalt structures exhibit strong lattice anharmonicity and low acoustic-phonon group velocity, which combine to produce intrinsic low thermal conductivity. As a result, we unveil microscopic mechanisms that explain experimental observations and provide insights for TE material design and discovery.

Authors:
 [1];  [2];  [3];  [4];  [1]
  1. Univ. of Nevada, Las Vegas, NV (United States). Dept. of Physics and HiPSEC
  2. Auburn Univ., AL (United States). Physics Dept.
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences. Computer Science and Mathematics Division
  4. Univ. of Washington, Seattle, WA (United States). Dept. of Materials Science
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS); Univ. of Nevada, Las Vegas, NV (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1265604
Alternate Identifier(s):
OSTI ID: 1198663; OSTI ID: 1332444
Grant/Contract Number:  
NA0001982; AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 92; Journal Issue: 2; Journal ID: ISSN 1098-0121
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Zhang, Yi, Dong, Jianjun, Kent, Paul R. C., Yang, Jihui, and Chen, Changfeng. Intrinsic low thermal conductivity in weakly ionic rocksalt structures. United States: N. p., 2015. Web. doi:10.1103/PhysRevB.92.020301.
Zhang, Yi, Dong, Jianjun, Kent, Paul R. C., Yang, Jihui, & Chen, Changfeng. Intrinsic low thermal conductivity in weakly ionic rocksalt structures. United States. https://doi.org/10.1103/PhysRevB.92.020301
Zhang, Yi, Dong, Jianjun, Kent, Paul R. C., Yang, Jihui, and Chen, Changfeng. Mon . "Intrinsic low thermal conductivity in weakly ionic rocksalt structures". United States. https://doi.org/10.1103/PhysRevB.92.020301. https://www.osti.gov/servlets/purl/1265604.
@article{osti_1265604,
title = {Intrinsic low thermal conductivity in weakly ionic rocksalt structures},
author = {Zhang, Yi and Dong, Jianjun and Kent, Paul R. C. and Yang, Jihui and Chen, Changfeng},
abstractNote = {A fundamental challenge in thermoelectric (TE) material research is meeting the simultaneous requirements of high carrier mobility and low thermal conductivity. Simple crystal structures are ideal for maintaining high carrier mobility, but they usually have high thermal conductivity. Here we show by first-principles lattice dynamics and Boltzmann transport calculations that weakly ionic rocksalt structures exhibit strong lattice anharmonicity and low acoustic-phonon group velocity, which combine to produce intrinsic low thermal conductivity. As a result, we unveil microscopic mechanisms that explain experimental observations and provide insights for TE material design and discovery.},
doi = {10.1103/PhysRevB.92.020301},
journal = {Physical Review. B, Condensed Matter and Materials Physics},
number = 2,
volume = 92,
place = {United States},
year = {Mon Jul 06 00:00:00 EDT 2015},
month = {Mon Jul 06 00:00:00 EDT 2015}
}

Journal Article:

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
journal, September 2008


Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

Nanostructured Thermoelectrics: The New Paradigm?
journal, February 2010

  • Kanatzidis, Mercouri G.
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm902195j

Quantum Dot Superlattice Thermoelectric Materials and Devices
journal, September 2002


Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials
journal, May 1996


Semiconducting Ge clathrates: Promising candidates for thermoelectric applications
journal, July 1998

  • Nolas, G. S.; Cohn, J. L.; Slack, G. A.
  • Applied Physics Letters, Vol. 73, Issue 2
  • DOI: 10.1063/1.121747

Copper ion liquid-like thermoelectrics
journal, March 2012

  • Liu, Huili; Shi, Xun; Xu, Fangfang
  • Nature Materials, Vol. 11, Issue 5, p. 422-425
  • DOI: 10.1038/nmat3273

Giant anharmonic phonon scattering in PbTe
journal, June 2011

  • Delaire, O.; Ma, J.; Marty, K.
  • Nature Materials, Vol. 10, Issue 8, p. 614-619
  • DOI: 10.1038/nmat3035

Entropically Stabilized Local Dipole Formation in Lead Chalcogenides
journal, December 2010


Anomalous Lattice Dynamics near the Ferroelectric Instability in PbTe
journal, October 2011


Intrinsically Minimal Thermal Conductivity in Cubic IVVI2 Semiconductors
journal, July 2008


Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2
journal, June 2013


Thermal conductivity of bulk and nanowire Mg 2 Si x Sn 1 x alloys from first principles
journal, November 2012


Effect of phonon confinement on the thermoelectric figure of merit of quantum wells
journal, December 1998

  • Balandin, Alexander; Wang, Kang L.
  • Journal of Applied Physics, Vol. 84, Issue 11
  • DOI: 10.1063/1.368928

Measurement of the elastic constants of argon from 3 to 77 degrees K
journal, March 1970


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


First-principles calculations of the ferroelastic transition between rutile-type and CaCl 2 -type SiO 2 at high pressures
journal, October 2008


Lattice thermal conductivity of MgO at conditions of Earth's interior
journal, February 2010

  • Tang, X.; Dong, J.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 10
  • DOI: 10.1073/pnas.0907194107

Heat transport in silicon from first-principles calculations
journal, August 2011


Ab initio thermal transport in compound semiconductors
journal, April 2013


Thermal Conductivity of MgO, Al 2 O 3 , Mg Al 2 O 4 , and Fe 3 O 4 Crystals from 3° to 300°K
journal, April 1962


Thermal diffusivity measurement of rock-forming minerals from 300° to 1100°K
journal, January 1968

  • Kanamori, Hiroo; Fujii, Naoyuki; Mizutani, Hitoshi
  • Journal of Geophysical Research, Vol. 73, Issue 2
  • DOI: 10.1029/JB073i002p00595

Über die Temperaturabhängigkeit der Wärmeleitfähigkeit fester Nichtmetalle
journal, January 1911


Phonon-Mediated Thermal Conductivity in Ionic Solids by Lattice Dynamics-Based Methods
journal, July 2011

  • Chernatynskiy, Aleksandr; Turney, Joseph E.; McGaughey, Alan J. H.
  • Journal of the American Ceramic Society, Vol. 94, Issue 10
  • DOI: 10.1111/j.1551-2916.2011.04743.x

Thermal conductivity of fully filled skutterudites: Role of the filler
journal, May 2014


Ionicity of the Chemical Bond in Crystals
journal, July 1970


Effect of thermal disorder on high figure of merit in PbTe
journal, July 2012


Microscopic mechanism of low thermal conductivity in lead telluride
journal, April 2012