skip to main content


This content will become publicly available on November 14, 2017

Title: Probing electronic wave functions of sodium-doped clusters: Dyson orbitals, anisotropy parameters, and ionization cross-sections

We apply high-level ab initio methods to describe the electronic structure of small clusters of ammonia and dimethylether (DME) doped with sodium, which provide a model for solvated electrons. We investigate the effect of the solvent and cluster size on the electronic states. We consider both energies and properties, with a focus on the shape of the electronic wave function and the related experimental observables such as photoelectron angular distributions. The central quantity in modeling photoionization experiments is the Dyson orbital, which describes the difference between the initial N-electron and final (N-1)-electron states of a system. Dyson orbitals enter the expression of the photoelectron matrix element, which determines total and partial photoionization cross-sections. We compute Dyson orbitals for the Na(NH3)n and Na(DME)m clusters using correlated wave functions (obtained with equation-of-motion coupled-cluster model for electron attachment with single and double substitutions) and compare them with more approximate Hartree-Fock and Kohn-Sham orbitals. As a result, we also analyze the effect of correlation and basis sets on the shapes of Dyson orbitals and the experimental observables.
 [1] ;  [1]
  1. Univ. of Southern California, Los Angeles, CA (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
Additional Journal Information:
Journal Name: Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory; Journal ID: ISSN 1089-5639
American Chemical Society
Research Org:
Univ. of Southern California, Los Angeles, CA (United States). Dept. of Chemistry
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; solvated electrons; Dyson orbitals; photoionization cross-sections; photoelectron angular distributions; theoretical modeling; assessment of DFT functionals; EOM-EA-CCSD; equation-of-motion coupled-clusters theory
OSTI Identifier: