skip to main content

DOE PAGESDOE PAGES

Title: Hybrid metal–organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly

Controlling inorganic structure and dimensionality through structure-directing agents is a versatile approach for new materials synthesis that has been used extensively for metal–organic frameworks and coordination polymers. However, the lack of ‘solid’ inorganic cores requires charge transport through single-atom chains and/or organic groups, limiting their electronic properties. Here, we report that strongly interacting diamondoid structure-directing agents guide the growth of hybrid metal–organic chalcogenide nanowires with solid inorganic cores having three-atom cross-sections, representing the smallest possible nanowires. The strong van der Waals attraction between diamondoids overcomes steric repulsion leading to a cis configuration at the active growth front, enabling face-on addition of precursors for nanowire elongation. These nanowires have band-like electronic properties, low effective carrier masses and three orders-of-magnitude conductivity modulation by hole doping. Furthermore, this discovery highlights a previously unexplored regime of structure-directing agents compared with traditional surfactant, block copolymer or metal–organic framework linkers.
Authors:
 [1] ;  [2] ;  [1] ;  [3] ;  [4] ;  [1] ;  [3] ;  [3] ;  [5] ;  [5] ; ORCiD logo [5] ;  [6] ;  [1] ;  [3] ;  [3] ;  [1]
  1. Stanford Institute for Materials and Energy Sciences, Stanford, CA (United States); Dept. of Materials Science and Engineering, Stanford, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Stanford Institute for Materials and Energy Sciences, Stanford, CA (United States)
  4. Univ. Nacional Autonoma de Mexico, Coyoacan (Mexico)
  5. Justus-Liebig Univ., Giessen (Germany)
  6. Stanford Univ., Stanford, CA (United States)
Publication Date:
Report Number(s):
SLAC-PUB-16852
Journal ID: ISSN 1476-1122
Grant/Contract Number:
AC02-76SF00515; AC02-05CH11231
Type:
Accepted Manuscript
Journal Name:
Nature Materials
Additional Journal Information:
Journal Volume: 16; Journal Issue: 3; Journal ID: ISSN 1476-1122
Publisher:
Nature Publishing Group
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; CHEM; MATSCI; SYNCHRAD
OSTI Identifier:
1331967
Alternate Identifier(s):
OSTI ID: 1459387

Yan, Hao, Hohman, J. Nathan, Li, Fei Hua, Jia, Chunjing, Solis-Ibarra, Diego, Wu, Bin, Dahl, Jeremy E. P., Carlson, Robert M. K., Tkachenko, Boryslav A., Fokin, Andrey A., Schreiner, Peter R., Vailionis, Arturas, Kim, Taeho Roy, Devereaux, Thomas P., Shen, Zhi -Xun, and Melosh, Nicholas A.. Hybrid metal–organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly. United States: N. p., Web. doi:10.1038/nmat4823.
Yan, Hao, Hohman, J. Nathan, Li, Fei Hua, Jia, Chunjing, Solis-Ibarra, Diego, Wu, Bin, Dahl, Jeremy E. P., Carlson, Robert M. K., Tkachenko, Boryslav A., Fokin, Andrey A., Schreiner, Peter R., Vailionis, Arturas, Kim, Taeho Roy, Devereaux, Thomas P., Shen, Zhi -Xun, & Melosh, Nicholas A.. Hybrid metal–organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly. United States. doi:10.1038/nmat4823.
Yan, Hao, Hohman, J. Nathan, Li, Fei Hua, Jia, Chunjing, Solis-Ibarra, Diego, Wu, Bin, Dahl, Jeremy E. P., Carlson, Robert M. K., Tkachenko, Boryslav A., Fokin, Andrey A., Schreiner, Peter R., Vailionis, Arturas, Kim, Taeho Roy, Devereaux, Thomas P., Shen, Zhi -Xun, and Melosh, Nicholas A.. 2016. "Hybrid metal–organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly". United States. doi:10.1038/nmat4823. https://www.osti.gov/servlets/purl/1331967.
@article{osti_1331967,
title = {Hybrid metal–organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly},
author = {Yan, Hao and Hohman, J. Nathan and Li, Fei Hua and Jia, Chunjing and Solis-Ibarra, Diego and Wu, Bin and Dahl, Jeremy E. P. and Carlson, Robert M. K. and Tkachenko, Boryslav A. and Fokin, Andrey A. and Schreiner, Peter R. and Vailionis, Arturas and Kim, Taeho Roy and Devereaux, Thomas P. and Shen, Zhi -Xun and Melosh, Nicholas A.},
abstractNote = {Controlling inorganic structure and dimensionality through structure-directing agents is a versatile approach for new materials synthesis that has been used extensively for metal–organic frameworks and coordination polymers. However, the lack of ‘solid’ inorganic cores requires charge transport through single-atom chains and/or organic groups, limiting their electronic properties. Here, we report that strongly interacting diamondoid structure-directing agents guide the growth of hybrid metal–organic chalcogenide nanowires with solid inorganic cores having three-atom cross-sections, representing the smallest possible nanowires. The strong van der Waals attraction between diamondoids overcomes steric repulsion leading to a cis configuration at the active growth front, enabling face-on addition of precursors for nanowire elongation. These nanowires have band-like electronic properties, low effective carrier masses and three orders-of-magnitude conductivity modulation by hole doping. Furthermore, this discovery highlights a previously unexplored regime of structure-directing agents compared with traditional surfactant, block copolymer or metal–organic framework linkers.},
doi = {10.1038/nmat4823},
journal = {Nature Materials},
number = 3,
volume = 16,
place = {United States},
year = {2016},
month = {12}
}

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996
  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials
journal, January 2010
  • Cui, Honggang; Webber, Matthew J.; Stupp, Samuel I.
  • Biopolymers, Vol. 94, Issue 1, p. 1-18
  • DOI: 10.1002/bip.21328

Reticular synthesis and the design of new materials
journal, June 2003
  • Yaghi, Omar M.; O'Keeffe, Michael; Ockwig, Nathan W.
  • Nature, Vol. 423, Issue 6941, p. 705-714
  • DOI: 10.1038/nature01650

A short history of SHELX
journal, December 2007
  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

Crystal structure refinement with SHELXL
journal, January 2015
  • Sheldrick, George M.
  • Acta Crystallographica Section C Structural Chemistry, Vol. 71, Issue 1, p. 3-8
  • DOI: 10.1107/S2053229614024218

Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices
journal, December 2013
  • Talin, A. Alec; Centrone, Andrea; Ford, Alexandra C.
  • Science, Vol. 343, Issue 6166, p. 66-69
  • DOI: 10.1126/science.1246738

Supramolecular Coordination: Self-Assembly of Finite Two- and Three-Dimensional Ensembles
journal, November 2011
  • Chakrabarty, Rajesh; Mukherjee, Partha Sarathi; Stang, Peter J.
  • Chemical Reviews, Vol. 111, Issue 11, p. 6810-6918
  • DOI: 10.1021/cr200077m

Phase-engineered low-resistance contacts for ultrathin MoS2 transistors
journal, August 2014
  • Kappera, Rajesh; Voiry, Damien; Yalcin, Sibel Ebru
  • Nature Materials, Vol. 13, Issue 12, p. 1128-1134
  • DOI: 10.1038/nmat4080

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013
  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444