skip to main content


Title: Conducting interface in oxide homojunction: Understanding of superior properties in black TiO 2

Black TiO 2 nanoparticles with a crystalline core and amorphous-shell structure exhibit superior optoelectronic properties in comparison with pristine TiO 2. The fundamental mechanisms underlying these enhancements, however, remain unclear, largely due to the inherent complexities and limitations of powder materials. Here, we fabricate TiO 2 homojunction films consisting of an oxygen-deficient amorphous layer on top of a highly crystalline layer, to simulate the structural/functional configuration of black TiO 2 nanoparticles. Metallic conduction is achieved at the crystalline–amorphous homointerface via electronic interface reconstruction, which we show to be the main reason for the enhanced electron transport of black TiO 2. As a result, this work not only achieves an unprecedented understanding of black TiO 2 but also provides a new perspective for investigating carrier generation and transport behavior at oxide interfaces, which are of tremendous fundamental and technological interest.
 [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 1530-6984
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 16; Journal Issue: 9; Journal ID: ISSN 1530-6984
American Chemical Society
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
36 MATERIALS SCIENCE; Material Science
OSTI Identifier: