skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular dynamics simulation of thermal transport in UO 2 containing uranium, oxygen, and fission-product defects

Abstract

Uranium dioxide (UO2) is the most commonly used fuel in light-water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, thereby governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models are replaced with models that incorporate explicit thermal-conductivity-degradation mechanisms during fuel burn up. This approach is able to represent the degradation of thermal conductivity due to each individual defect type, rather than the overall burn-up measure typically used, which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham-type interatomic potential and a potential that combines the many-body embedded-atom-method potential with Morse-Buckingham pair potentials. Potential parameters for UO2+x and ZrO2 are developed for the latter potential. Physical insights from the resonant phonon-spin-scattering mechanism due tomore » spins on the magnetic uranium ions are introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high-temperature model typically used in fuel-performance codes. The model is validated by comparison to low-temperature experimental measurements on single-crystal hyperstoichiometric UO2+x samples and high-temperature literature data. Furthermore, this work will enable more accurate fuel-performance simulations and will extend to new fuel types and operating conditions, all of which improve the fuel economics of nuclear energy and maintain high fuel reliability and safety.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [2];  [2];  [1];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Imperial College, London (United Kingdom)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1331270
Alternate Identifier(s):
OSTI ID: 1329983
Report Number(s):
LA-UR-16-20612
Journal ID: ISSN 2331-7019; PRAHB2; TRN: US1700115
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Applied
Additional Journal Information:
Journal Volume: 6; Journal Issue: 4; Journal ID: ISSN 2331-7019
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS

Citation Formats

Liu, Xiang -Yang, Cooper, Michael William D., McClellan, Kenneth James, Lashley, Jason Charles, Byler, Darrin David, Bell, B. D. C., Grimes, R. W., Stanek, Christopher Richard, and Andersson, David Anders. Molecular dynamics simulation of thermal transport in UO2 containing uranium, oxygen, and fission-product defects. United States: N. p., 2016. Web. doi:10.1103/PhysRevApplied.6.044015.
Liu, Xiang -Yang, Cooper, Michael William D., McClellan, Kenneth James, Lashley, Jason Charles, Byler, Darrin David, Bell, B. D. C., Grimes, R. W., Stanek, Christopher Richard, & Andersson, David Anders. Molecular dynamics simulation of thermal transport in UO2 containing uranium, oxygen, and fission-product defects. United States. doi:10.1103/PhysRevApplied.6.044015.
Liu, Xiang -Yang, Cooper, Michael William D., McClellan, Kenneth James, Lashley, Jason Charles, Byler, Darrin David, Bell, B. D. C., Grimes, R. W., Stanek, Christopher Richard, and Andersson, David Anders. Tue . "Molecular dynamics simulation of thermal transport in UO2 containing uranium, oxygen, and fission-product defects". United States. doi:10.1103/PhysRevApplied.6.044015. https://www.osti.gov/servlets/purl/1331270.
@article{osti_1331270,
title = {Molecular dynamics simulation of thermal transport in UO2 containing uranium, oxygen, and fission-product defects},
author = {Liu, Xiang -Yang and Cooper, Michael William D. and McClellan, Kenneth James and Lashley, Jason Charles and Byler, Darrin David and Bell, B. D. C. and Grimes, R. W. and Stanek, Christopher Richard and Andersson, David Anders},
abstractNote = {Uranium dioxide (UO2) is the most commonly used fuel in light-water nuclear reactors and thermal conductivity controls the removal of heat produced by fission, thereby governing fuel temperature during normal and accident conditions. The use of fuel performance codes by the industry to predict operational behavior is widespread. A primary source of uncertainty in these codes is thermal conductivity, and optimized fuel utilization may be possible if existing empirical models are replaced with models that incorporate explicit thermal-conductivity-degradation mechanisms during fuel burn up. This approach is able to represent the degradation of thermal conductivity due to each individual defect type, rather than the overall burn-up measure typically used, which is not an accurate representation of the chemical or microstructure state of the fuel that actually governs thermal conductivity and other properties. To generate a mechanistic thermal conductivity model, molecular dynamics (MD) simulations of UO2 thermal conductivity including representative uranium and oxygen defects and fission products are carried out. These calculations employ a standard Buckingham-type interatomic potential and a potential that combines the many-body embedded-atom-method potential with Morse-Buckingham pair potentials. Potential parameters for UO2+x and ZrO2 are developed for the latter potential. Physical insights from the resonant phonon-spin-scattering mechanism due to spins on the magnetic uranium ions are introduced into the treatment of the MD results, with the corresponding relaxation time derived from existing experimental data. High defect scattering is predicted for Xe atoms compared to that of La and Zr ions. Uranium defects reduce the thermal conductivity more than oxygen defects. For each defect and fission product, scattering parameters are derived for application in both a Callaway model and the corresponding high-temperature model typically used in fuel-performance codes. The model is validated by comparison to low-temperature experimental measurements on single-crystal hyperstoichiometric UO2+x samples and high-temperature literature data. Furthermore, this work will enable more accurate fuel-performance simulations and will extend to new fuel types and operating conditions, all of which improve the fuel economics of nuclear energy and maintain high fuel reliability and safety.},
doi = {10.1103/PhysRevApplied.6.044015},
journal = {Physical Review Applied},
number = 4,
volume = 6,
place = {United States},
year = {2016},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Thermophysical properties and oxygen transport in the (U ,Pu1−)O2 lattice
journal, June 2015


Multidimensional multiphysics simulation of nuclear fuel behavior
journal, April 2012


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Multipolar, magnetic, and vibrational lattice dynamics in the low-temperature phase of uranium dioxide
journal, September 2011


Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels
journal, July 1929


Structure and Ionic Mobility of Zirconia at High Temperature
journal, January 1985


Predicting material release during a nuclear reactor accident
journal, February 2015

  • Konings, Rudy J. M.; Wiss, Thierry; Beneš, Ondřej
  • Nature Materials, Vol. 14, Issue 3
  • DOI: 10.1038/nmat4224

Thermophysical and anion diffusion properties of (U x ,Th 1− x )O 2
journal, November 2014

  • Cooper, Michael W. D.; Murphy, Samuel T.; Fossati, Paul C. M.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 470, Issue 2171
  • DOI: 10.1098/rspa.2014.0427

High-temperature X-ray study of uranium oxides in the UO2U3O8 region
journal, December 1955


Towards more accurate molecular dynamics calculation of thermal conductivity: Case study of GaN bulk crystals
journal, March 2009


Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures
journal, September 1963


Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Structural, electronic and vibrational properties of tetragonal zirconia under pressure: a density functional theory study
journal, November 2009


Solution Mechanisms for Dopant Oxides in Yttria
journal, June 1999


Phonon Lifetime Investigation of Anharmonicity and Thermal Conductivity of UO 2 by Neutron Scattering and Theory
journal, April 2013


First-principles DFT modeling of nuclear fuel materials
journal, April 2012

  • Liu, X. -Y.; Andersson, D. A.; Uberuaga, B. P.
  • Journal of Materials Science, Vol. 47, Issue 21
  • DOI: 10.1007/s10853-012-6471-6

Molecular-dynamics calculation of the thermal conductivity of vitreous silica
journal, June 1999


Density Functional Theory Calculations of UO 2 Oxidation: Evolution of UO 2+ x , U 4 O 9– y , U 3 O 7 , and U 3 O 8
journal, February 2013

  • Andersson, D. A.; Baldinozzi, G.; Desgranges, L.
  • Inorganic Chemistry, Vol. 52, Issue 5
  • DOI: 10.1021/ic400118p

Multiscale development of a fission gas thermal conductivity model: Coupling atomic, meso and continuum level simulations
journal, September 2013


Effect of pores and He bubbles on the thermal transport properties of UO2 by molecular dynamics simulation
journal, January 2015


Atomic scale modelling of hexagonal structured metallic fission product alloys
journal, April 2015

  • Middleburgh, S. C.; King, D. M.; Lumpkin, G. R.
  • Royal Society Open Science, Vol. 2, Issue 4
  • DOI: 10.1098/rsos.140292

Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation
journal, May 1999

  • Wolf, D.; Keblinski, P.; Phillpot, S. R.
  • The Journal of Chemical Physics, Vol. 110, Issue 17
  • DOI: 10.1063/1.478738

The Crystal Dynamics of Uranium Dioxide
journal, August 1965

  • Dolling, G.; Cowley, R. A.; Woods, A. D. B.
  • Canadian Journal of Physics, Vol. 43, Issue 8
  • DOI: 10.1139/p65-135

Model for Lattice Thermal Conductivity at Low Temperatures
journal, February 1959


Phase relationships in the zirconia-yttria system
journal, September 1975


Development of a multiscale thermal conductivity model for fission gas in UO2
journal, February 2016


Molecular Dynamics study of the effects of non-stoichiometry and oxygen Frenkel pairs on the thermal conductivity of uranium dioxide
journal, February 2013


Lanthanum energetics in cubic ZrO2 and UO2 from DFT and DFT+U studies
journal, July 2011


The chemical state of the fission products in oxide fuels
journal, April 1985


Thermal Properties of UO2 by Molecular Dynamics Simulation
journal, January 2011

  • Uchida, Teppei; Sunaoshi, Takeo; Kato, Masato
  • Progress in Nuclear Science and Technology, Vol. 2, Issue 0
  • DOI: 10.15669/pnst.2.598

Atomistic modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in <mml:math altimg="si236.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">UO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>±</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>: Implications for nuclear fuel performance modeling
journal, August 2014


A mechanism for the UO2 to α-U3O8 phase transformation
journal, June 1995


Origin of Low Thermal Conductivity in Nuclear Fuels
journal, June 2008


Thermal transport properties of uranium dioxide by molecular dynamics simulations
journal, April 2008


A many-body potential approach to modelling the thermomechanical properties of actinide oxides
journal, February 2014


Effect of burn-up on the thermal conductivity of uranium dioxide up to 100.000 MWdt−1
journal, April 2004


Impact of uniaxial strain and doping on oxygen diffusion in CeO2
journal, August 2014

  • Rushton, M. J. D.; Chroneos, A.
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06068

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

The crystal structure of tetragonal ZrO2
journal, November 1962


Comparison of interatomic potentials for UO2
journal, May 2008


Thermodynamic assessment of the uranium–oxygen system
journal, August 2002


Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface
journal, February 1994


High-pressure structural evolution of undoped tetragonal nanocrystalline zirconia
journal, October 2000


The Structures of the Carbides, Nitrides and Oxides of Uranium 1
journal, January 1948

  • Rundle, R. E.; Baenziger, N. C.; Wilson, A. S.
  • Journal of the American Chemical Society, Vol. 70, Issue 1
  • DOI: 10.1021/ja01181a029

Anisotropic thermal conductivity in uranium dioxide
journal, August 2014

  • Gofryk, K.; Du, S.; Stanek, C. R.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5551

Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals
journal, June 1984


A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity
journal, April 1997

  • Müller-Plathe, Florian
  • The Journal of Chemical Physics, Vol. 106, Issue 14
  • DOI: 10.1063/1.473271

Thermal Conductivity of Nearly Stoichiometric Single-Crystal and Polycrystalline UO 2
journal, January 1971


Thermal Transport in Off-Stoichiometric Uranium Dioxide by Atomic Level Simulation
journal, April 2009

  • Watanabe, Taku; Srivilliputhur, Srinivasan G.; Schelling, Patrick K.
  • Journal of the American Ceramic Society, Vol. 92, Issue 4
  • DOI: 10.1111/j.1551-2916.2009.02966.x

Computational study of the energetics of charge and cation mixing in U 1 x Ce x O 2
journal, August 2011


Evaluation of Thermal Conductivity of Hyperstoichiometric UO2+x by Molecular Dynamics Simulation
journal, April 2007

  • Yamasaki, Sho; Arima, Tatsumi; Idemitsu, Kazuya
  • International Journal of Thermophysics, Vol. 28, Issue 2
  • DOI: 10.1007/s10765-007-0170-6

A ‘magnetic’ interatomic potential for molecular dynamics simulations
journal, October 2005


Comparison of atomic-level simulation methods for computing thermal conductivity
journal, April 2002

  • Schelling, Patrick K.; Phillpot, Simon R.; Keblinski, Pawel
  • Physical Review B, Vol. 65, Issue 14
  • DOI: 10.1103/PhysRevB.65.144306

Thermal Conductivity Measurements on UO 2+x from 300 to 1,400 K
journal, August 1996


Thermal conductivities of irradiated UO2 and (U,Gd)O2 pellets
journal, January 2002


Magnetic excitations and dynamical Jahn-Teller distortions in UO 2
journal, June 1999


Effects of edge dislocations on thermal transport in UO2
journal, March 2013


Diffusion of Xe in UO2
journal, January 1990

  • Ball, Richard G. J.; Grimes, Robin W.
  • Journal of the Chemical Society, Faraday Transactions, Vol. 86, Issue 8
  • DOI: 10.1039/ft9908601257

Thermal conductivity of UO2+x and U4O9−y
journal, November 2013


Thermal conductivity of uranium dioxide up to 2900 K from simultaneous measurement of the heat capacity and thermal diffusivity
journal, January 1999

  • Ronchi, C.; Sheindlin, M.; Musella, M.
  • Journal of Applied Physics, Vol. 85, Issue 2
  • DOI: 10.1063/1.369159