Development of an optical Zn2+ probe based on a single fluorescent protein
- Univ. of Colorado, Boulder, CO (United States)
- National Renewable Energy Lab. (NREL), Golden, CO (United States)
Various fluorescent probes have been developed to reveal the biological functions of intracellular labile Zn2+. Here we present Green Zinc Probe (GZnP), a novel genetically encoded Zn2+ sensor design based on a single fluorescent protein (single-FP). The GZnP sensor is generated by attaching two zinc fingers (ZF) of the transcription factor Zap1 (ZF1 and ZF2) to the two ends of a circularly permuted green fluorescent protein (cpGFP). Formation of ZF folds induces interaction between the two ZFs, which induces a change in the cpGFP conformation, leading to an increase in fluorescence. A small sensor library is created to include mutations in the ZFs, cpGFP and linkers between ZF and cpGFP to improve signal stability, sensor brightness and dynamic range based on rational protein engineering and computational design by Rosetta. Using a cell-based library screen, we identify sensor GZnP1 which demonstrates a stable maximum signal, decent brightness (QY = 0.42 at apo state), as well as specific and sensitive response to Zn2+ in HeLa cells (Fmax/Fmin = 2.6, Kd = 58 pM, pH 7.4). The subcellular localizing sensors mito-GZnP1 (in mitochondria matrix) and Lck-GZnP1 (on plasma membrane) display sensitivity to Zn2+ (Fmax/Fmin = 2.2). In conclusion, this sensor design provides freedom to be used in combination with other optical indicators and optogenetic tools for simultaneous imaging and advancing our understanding of cellular Zn2+ function.
- Research Organization:
- National Renewable Energy Laboratory (NREL), Golden, CO (United States)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation and Fuels. Bioenergy Technologies Office (BETO)
- Grant/Contract Number:
- AC36-08GO28308
- OSTI ID:
- 1330942
- Report Number(s):
- NREL/JA-2700-66894
- Journal Information:
- ACS Chemical Biology, Vol. 11, Issue 10; ISSN 1554-8929
- Publisher:
- American Chemical SocietyCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Role for first zinc finger of WT1 in DNA sequence specificity: Denys–Drash syndrome-associated WT1 mutant in ZF1 enhances affinity for a subset of WT1 binding sites
Trace Chemical Detection Using Intercalated MXenes as a Signal Enhancing Substrate in Optical Probes