skip to main content

DOE PAGESDOE PAGES

Title: Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe

CdTe defect chemistry is adjusted by annealing samples with excess Cd or Te vapor with and without extrinsic dopants. We observe that Group I (Cu and Na) elements can increase hole density above 1016 cm-3, but compromise lifetime and stability. By post-deposition incorporation of a Group V dopant (P) in a Cd-rich ambient, lifetimes of 30 ns with 1016 cm-3 hole density are achieved in single-crystal and polycrystalline CdTe without CdCl2 or Cu. Furthermore, phosphorus doping appears to be thermally stable. In conclusion, this combination of long lifetime, high carrier concentration, and improved stability can help overcome historic barriers for CdTe solar cell development.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ; ORCiD logo [1] ;  [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Report Number(s):
NREL/JA-5K00-66107
Journal ID: ISSN 2166-532X; AMPADS
Grant/Contract Number:
AC36-08GO28308; AC36-08-GO28308
Type:
Published Article
Journal Name:
APL Materials
Additional Journal Information:
Journal Volume: 4; Journal Issue: 11; Journal ID: ISSN 2166-532X
Publisher:
American Institute of Physics (AIP)
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; hole density; doping; II-VI semiconductors; photoluminescence; sodium
OSTI Identifier:
1330596
Alternate Identifier(s):
OSTI ID: 1332487