skip to main content

DOE PAGESDOE PAGES

Title: The physical chemistry of Criegee intermediates in the gas phase

Here, carbonyl oxides, also known as Criegee intermediates, are key intermediates in both gas phase ozonolysis of unsaturated hydrocarbons in the troposphere and solution phase organic synthesis via ozonolysis. Although the study of Criegee intermediates in both arenas has a long history, direct studies in the gas phase have only recently become possible through new methods of generating stabilised Criegee intermediates in sufficient quantities. This advance has catalysed a large number of new experimental and theoretical investigations of Criegee intermediate chemistry. In this article we review the physical chemistry of Criegee intermediates, focusing on their molecular structure, spectroscopy, unimolecular and bimolecular reactions. These recent results have overturned conclusions from some previous studies, while confirming others, and have clarified areas of investigation that will be critical targets for future studies. In addition to expanding our fundamental understanding of Criegee intermediates, the rapidly expanding knowledge base will support increasingly predictive models of their impacts on society.
Authors:
 [1] ;  [1]
  1. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Publication Date:
Report Number(s):
SAND-2016-10077J
Journal ID: ISSN 0144-235X; 648113
Grant/Contract Number:
AC04-94AL85000
Type:
Accepted Manuscript
Journal Name:
International Reviews in Physical Chemistry
Additional Journal Information:
Journal Volume: 34; Journal Issue: 3; Journal ID: ISSN 0144-235X
Publisher:
Taylor & Francis
Research Org:
Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Criegee intermediate; carbonyl oxide; ozonolysis
OSTI Identifier:
1329620