skip to main content

DOE PAGESDOE PAGES

Title: The controlling mechanism for potential loss in CH 3NH 3PbBr 3 hybrid solar cells

In this study, we investigated moisture and thermal stability of MAPbBr 3 perovskite material. Cubic MAPbBr 3 was found to be moisture-insensitive and can avoid the thermal stability issues introduced by low-temperature phase transition in MAPbI 3. MAPbBr 3 and MAPbI 3 hybrid solar cells with efficiencies of ~7.1% and ~15.5%, respectively, were fabricated, and we identified the correlation between the working temperature, light intensity, and the photovoltaic performance. No charge-carrier transport barriers were found in the MAPbBr 3 and MAPbI 3 solar cells. The MAPbBr 3 solar cell displays a better stability under high working temperature because of its close-packed crystal structure. Temperature-dependent photocurrent-voltage characteristics indicate that, unlike the MAPbI 3 solar cell with an activation energy (E A) nearly equal to its band gap (E g), the E A for the MAPbBr 3 solar cell is much lower than its E g. This indicates that a high interface recombination process limits the photovoltage and consequently the device performance of the MAPbBr 3 solar cell.
Authors:
 [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1]
  1. Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Report Number(s):
NREL/JA-5900-66015
Journal ID: ISSN 2380-8195
Grant/Contract Number:
AC36-08GO28308
Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 1; Journal Issue: 2; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; activation energy; potential loss; interface recombination; transition temperature; perovskite solar cell
OSTI Identifier:
1329465