skip to main content


Title: Joint measurement of the atmospheric muon flux through the Puy de Dome volcano with plastic scintillators and Resistive Plate Chambers detectors

The muographic imaging of volcanoes relies on the measured transmittance of the atmospheric muon flux through the target. An important bias affecting the result comes from background contamination mimicking a higher transmittance. The MU-RAY and TOMUVOL collaborations measured independently in 2013 the atmospheric muon flux transmitted through the Puy de Dôme volcano using their early prototype detectors, based on plastic scintillators and on Glass Resistive Plate Chambers, respectively. These detectors had three (MU-RAY) or four (TOMUVOL) detection layers of 1 m 2 each, tens (MU-RAY) or hundreds (TOMUVOL) of nanosecond time resolution, a few millimeter position resolution, an energy threshold of few hundreds MeV, and no particle identification capabilities. The prototypes were deployed about 1.3 km away from the summit, where they measured, behind rock depths larger than 1000 m, remnant fluxes of 1.83±0.50(syst)±0.07(stat) m –2 d –1 deg –2 (MU-RAY) and 1.95±0.16(syst)±0.05(stat) m –2 d –1 deg –2 (TOMUVOL), that roughly correspond to the expected flux of high-energy atmospheric muons crossing 600 meters water equivalent (mwe) at 18° elevation. This implies that imaging depths larger than 500 mwe from 1 km away using such prototype detectors suffer from an overwhelming background. These measurements confirm that a new generation ofmore » detectors with higher momentum threshold, time-of-flight measurement, and/or particle identification is needed. As a result, the MU-RAY and TOMUVOL collaborations expect shortly to operate improved detectors, suitable for a robust muographic imaging of kilometer-scale volcanoes.« less
 [1] ;  [2] ;  [3] ;  [4] ;  [5] ;  [6] ;  [4] ;  [7] ;  [8] ;  [9] ;  [10] ;  [11] ;  [4] ;  [4] ;  [8] ;  [12] ;  [12] ;  [13] ;  [12] ;  [2] more »;  [4] ;  [13] ;  [11] ;  [8] ;  [4] ;  [2] ;  [3] ;  [12] ;  [3] ;  [8] ;  [8] ;  [8] ;  [4] « less
  1. Univ. Degli Studi di Napoli Federico II, INFN, Napoli (Italy)
  2. INFN, Napoli (Italy)
  3. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  4. Clermont Univ., Univ. Blaise Pascal, CNRS/IN2P3, Clermont-Ferrand (France)
  5. Univ. Blaise Pascal - CNRS-IRD, OPGC, Clermont-Ferrand (France)
  6. Univ. degli Studi di Firenze, Florence (Italy)
  7. INFN, Florence (Italy)
  8. Univ. degli Studi di Napoli Federico II, Naples (Italy); INFN, Napoli (Italy)
  9. Univ. de Lyon, CNRS/IN2P3, Villeurbanne (France)
  10. Univ. degli Studi di Firenze, Florence (Italy); INFN, Florence (Italy)
  11. Ecole Superieure des Geometres et Topographes du Mans, Le Mans (France)
  12. Univ. Blaise Pascal-CNRS-IRD, OPGC, Clermont-Ferrand (France)
  13. Univ. de Lyon, CNRS/IN2P3, IPNL, Villeurbanne (France)
Publication Date:
Report Number(s):
Journal ID: ISSN 2169-9313; 1423503
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research. Solid Earth
Additional Journal Information:
Journal Volume: 120; Journal Issue: 11; Journal ID: ISSN 2169-9313
American Geophysical Union
Research Org:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Country of Publication:
United States
OSTI Identifier: