DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?

Abstract

Abstract. Understanding methane emissions from the Arctic, a fast-warming carbon reservoir, is important for projecting future changes in the global methane cycle. Here we optimized methane emissions from north of 60°N (pan-Arctic) regions using a nested-grid high-resolution inverse model that assimilates both high-precision surface measurements and column-average SCanning Imaging Absorption spectroMeter for Atmospheric CHartogrphY (SCIAMACHY) satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes were integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated with six biogeochemical models. In our estimates, in 2005, global methane emissions were in the range of 496.4–511.5Tgyr–1, and pan-Arctic methane emissions were in the range of 11.9–28.5Tgyr–1. Methane emissions from pan-Arctic wetlands and lakes were 5.5–14.2 and 2.4–14.2Tgyr–1, respectively. Methane emissions from Siberian wetlands and lakes are the largest and also have the largest uncertainty. Our results indicate that the uncertainty introduced by different wetland models could be much larger than the uncertainty of each inversion. We also show that assimilating satellite retrievals can reduce the uncertainty of the nested-grid inversions. The significance of lake emissions cannot be identified across the pan-Arctic by high-resolution inversions, but it is possible to identify high lake emissions frommore » some specific regions. In contrast to global inversions, high-resolution nested-grid inversions perform better in estimating near-surface methane concentrations.« less

Authors:
ORCiD logo; ORCiD logo; ; ORCiD logo; ; ; ORCiD logo; ;
Publication Date:
Research Org.:
Purdue Univ., West Lafayette, IN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1328713
Alternate Identifier(s):
OSTI ID: 1465820
Grant/Contract Number:  
FG02-08ER64599; AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online) Journal Volume: 16 Journal Issue: 19; Journal ID: ISSN 1680-7324
Publisher:
Copernicus Publications, EGU
Country of Publication:
Germany
Language:
English
Subject:
58 GEOSCIENCES

Citation Formats

Tan, Zeli, Zhuang, Qianlai, Henze, Daven K., Frankenberg, Christian, Dlugokencky, Ed, Sweeney, Colm, Turner, Alexander J., Sasakawa, Motoki, and Machida, Toshinobu. Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?. Germany: N. p., 2016. Web. doi:10.5194/acp-16-12649-2016.
Tan, Zeli, Zhuang, Qianlai, Henze, Daven K., Frankenberg, Christian, Dlugokencky, Ed, Sweeney, Colm, Turner, Alexander J., Sasakawa, Motoki, & Machida, Toshinobu. Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?. Germany. https://doi.org/10.5194/acp-16-12649-2016
Tan, Zeli, Zhuang, Qianlai, Henze, Daven K., Frankenberg, Christian, Dlugokencky, Ed, Sweeney, Colm, Turner, Alexander J., Sasakawa, Motoki, and Machida, Toshinobu. Wed . "Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?". Germany. https://doi.org/10.5194/acp-16-12649-2016.
@article{osti_1328713,
title = {Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?},
author = {Tan, Zeli and Zhuang, Qianlai and Henze, Daven K. and Frankenberg, Christian and Dlugokencky, Ed and Sweeney, Colm and Turner, Alexander J. and Sasakawa, Motoki and Machida, Toshinobu},
abstractNote = {Abstract. Understanding methane emissions from the Arctic, a fast-warming carbon reservoir, is important for projecting future changes in the global methane cycle. Here we optimized methane emissions from north of 60°N (pan-Arctic) regions using a nested-grid high-resolution inverse model that assimilates both high-precision surface measurements and column-average SCanning Imaging Absorption spectroMeter for Atmospheric CHartogrphY (SCIAMACHY) satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes were integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated with six biogeochemical models. In our estimates, in 2005, global methane emissions were in the range of 496.4–511.5Tgyr–1, and pan-Arctic methane emissions were in the range of 11.9–28.5Tgyr–1. Methane emissions from pan-Arctic wetlands and lakes were 5.5–14.2 and 2.4–14.2Tgyr–1, respectively. Methane emissions from Siberian wetlands and lakes are the largest and also have the largest uncertainty. Our results indicate that the uncertainty introduced by different wetland models could be much larger than the uncertainty of each inversion. We also show that assimilating satellite retrievals can reduce the uncertainty of the nested-grid inversions. The significance of lake emissions cannot be identified across the pan-Arctic by high-resolution inversions, but it is possible to identify high lake emissions from some specific regions. In contrast to global inversions, high-resolution nested-grid inversions perform better in estimating near-surface methane concentrations.},
doi = {10.5194/acp-16-12649-2016},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 19,
volume = 16,
place = {Germany},
year = {Wed Oct 12 00:00:00 EDT 2016},
month = {Wed Oct 12 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.5194/acp-16-12649-2016

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Anthropogenic emissions of methane in the United States
journal, November 2013

  • Miller, S. M.; Wofsy, S. C.; Michalak, A. M.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 50
  • DOI: 10.1073/pnas.1314392110

Methane emissions in East Asia for 2000-2011 estimated using an atmospheric Bayesian inversion: METHANE EMISSIONS IN EAST ASIA
journal, May 2015

  • Thompson, R. L.; Stohl, A.; Zhou, L. X.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 9
  • DOI: 10.1002/2014JD022394

Seasonal climatology of CO 2 across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network : VERTICAL CLIMATOLOGY OF CO
journal, May 2015

  • Sweeney, Colm; Karion, Anna; Wolter, Sonja
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 10
  • DOI: 10.1002/2014JD022591

A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements
journal, January 2014

  • Houweling, S.; Krol, M.; Bergamaschi, P.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 8
  • DOI: 10.5194/acp-14-3991-2014

CarbonTracker-CH 4 : an assimilation system for estimating emissions of atmospheric methane
journal, January 2014

  • Bruhwiler, L.; Dlugokencky, E.; Masarie, K.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 16
  • DOI: 10.5194/acp-14-8269-2014

Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources
journal, August 2011

  • Kai, Fuu Ming; Tyler, Stanley C.; Randerson, James T.
  • Nature, Vol. 476, Issue 7359
  • DOI: 10.1038/nature10259

Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

Long-term decline of global atmospheric ethane concentrations and implications for methane
journal, August 2012

  • Simpson, Isobel J.; Sulbaek Andersen, Mads P.; Meinardi, Simone
  • Nature, Vol. 488, Issue 7412
  • DOI: 10.1038/nature11342

Renewed growth of atmospheric methane
journal, January 2008

  • Rigby, M.; Prinn, R. G.; Fraser, P. J.
  • Geophysical Research Letters, Vol. 35, Issue 22
  • DOI: 10.1029/2008GL036037

Magnitude and seasonality of wetland methane emissions from the Hudson Bay Lowlands (Canada)
journal, January 2011

  • Pickett-Heaps, C. A.; Jacob, D. J.; Wecht, K. J.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 8
  • DOI: 10.5194/acp-11-3773-2011

Inverse Modeling of Atmospheric Carbon Dioxide Fluxes
journal, October 2001


Modeling methane emissions from arctic lakes: Model development and site‐level study
journal, April 2015

  • Tan, Zeli; Zhuang, Qianlai; Walter Anthony, Katey
  • Journal of Advances in Modeling Earth Systems, Vol. 7, Issue 2
  • DOI: 10.1002/2014MS000344

On the consistency between global and regional methane emissions inferred from SCIAMACHY, TANSO-FTS, IASI and surface measurements
journal, January 2014

  • Cressot, C.; Chevallier, F.; Bousquet, P.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 2
  • DOI: 10.5194/acp-14-577-2014

Impact of meteorology and emissions on methane trends, 1990–2004
journal, January 2006

  • Fiore, Arlene M.; Horowitz, Larry W.; Dlugokencky, Edward J.
  • Geophysical Research Letters, Vol. 33, Issue 12
  • DOI: 10.1029/2006GL026199

Improved Attribution of Climate Forcing to Emissions
journal, October 2009


Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry: ATMOSPHERIC CHEMISTRY AND GREENHOUSE GASES
journal, May 2012

  • Prather, Michael J.; Holmes, Christopher D.; Hsu, Juno
  • Geophysical Research Letters, Vol. 39, Issue 9
  • DOI: 10.1029/2012GL051440

Inverse modelling of CH 4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY
journal, January 2015

  • Alexe, M.; Bergamaschi, P.; Segers, A.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 1
  • DOI: 10.5194/acp-15-113-2015

Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements
journal, January 2013

  • Fraser, A.; Palmer, P. I.; Feng, L.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 11
  • DOI: 10.5194/acp-13-5697-2013

Atmospheric observations of Arctic Ocean methane emissions up to 82° north
journal, April 2012

  • Kort, E. A.; Wofsy, S. C.; Daube, B. C.
  • Nature Geoscience, Vol. 5, Issue 5
  • DOI: 10.1038/ngeo1452

Natural and anthropogenic methane fluxes in Eurasia: a mesoscale quantification by generalized atmospheric inversion
journal, January 2015


CH 4 retrievals from space-based solar backscatter measurements: Performance evaluation against simulated aerosol and cirrus loaded scenes : EVALUATION OF CH
journal, December 2010

  • Butz, A.; Hasekamp, O. P.; Frankenberg, C.
  • Journal of Geophysical Research: Atmospheres, Vol. 115, Issue D24
  • DOI: 10.1029/2010JD014514

Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere: CH
journal, May 2016

  • Myhre, C. Lund; Ferré, B.; Platt, S. M.
  • Geophysical Research Letters, Vol. 43, Issue 9
  • DOI: 10.1002/2016GL068999

Methane observations from the Greenhouse Gases Observing SATellite: Comparison to ground-based TCCON data and model calculations: GOSAT CH
journal, August 2011

  • Parker, Robert; Boesch, Hartmut; Cogan, Austin
  • Geophysical Research Letters, Vol. 38, Issue 15
  • DOI: 10.1029/2011GL047871

Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data
journal, January 2015

  • Turner, A. J.; Jacob, D. J.; Wecht, K. J.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 12
  • DOI: 10.5194/acp-15-7049-2015

A scalable model for methane consumption in arctic mineral soils
journal, May 2016

  • Oh, Youmi; Stackhouse, Brandon; Lau, Maggie C. Y.
  • Geophysical Research Letters, Vol. 43, Issue 10
  • DOI: 10.1002/2016GL069049

An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions
journal, January 2012


Freshwater Methane Emissions Offset the Continental Carbon Sink
journal, January 2011


NET EMISSIONS OF CH 4 AND CO 2 IN ALASKA: IMPLICATIONS FOR THE REGION'S GREENHOUSE GAS BUDGET
journal, January 2007


Inverse Methods for Atmospheric Sounding: Theory and Practice
book, July 2000

  • Rodgers, Clive D.
  • Series on Atmospheric, Oceanic and Planetary Physics, Vol. 2
  • DOI: 10.1142/3171

HEMCO v1.0: a versatile, ESMF-compliant component for calculating emissions in atmospheric models
journal, January 2014

  • Keller, C. A.; Long, M. S.; Yantosca, R. M.
  • Geoscientific Model Development, Vol. 7, Issue 4
  • DOI: 10.5194/gmd-7-1409-2014

Large-Scale Controls of Methanogenesis Inferred from Methane and Gravity Spaceborne Data
journal, January 2010


Methane release from wetlands and watercourses in Europe
journal, March 2009


Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT
journal, January 2008

  • Frankenberg, Christian; Bergamaschi, Peter; Butz, André
  • Geophysical Research Letters, Vol. 35, Issue 15
  • DOI: 10.1029/2008GL034300

Methane emissions from pan‐Arctic lakes during the 21st century: An analysis with process‐based models of lake evolution and biogeochemistry
journal, December 2015

  • Tan, Zeli; Zhuang, Qianlai
  • Journal of Geophysical Research: Biogeosciences, Vol. 120, Issue 12
  • DOI: 10.1002/2015JG003184

Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009)
journal, January 2010

  • van der Werf, G. R.; Randerson, J. T.; Giglio, L.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 23
  • DOI: 10.5194/acp-10-11707-2010

Development of the adjoint of GEOS-Chem
journal, January 2007

  • Henze, D. K.; Hakami, A.; Seinfeld, J. H.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 9
  • DOI: 10.5194/acp-7-2413-2007

Three-dimensional model synthesis of the global methane cycle
journal, January 1991

  • Fung, I.; John, J.; Lerner, J.
  • Journal of Geophysical Research, Vol. 96, Issue D7
  • DOI: 10.1029/91JD01247

The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results
journal, January 2010

  • Jacob, D. J.; Crawford, J. H.; Maring, H.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 11
  • DOI: 10.5194/acp-10-5191-2010

Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming
journal, September 2006

  • Walter, K. M.; Zimov, S. A.; Chanton, J. P.
  • Nature, Vol. 443, Issue 7107
  • DOI: 10.1038/nature05040

Conversion of NOAA atmospheric dry air CH 4 mole fractions to a gravimetrically prepared standard scale
journal, January 2005


Modeling methane emissions from the Alaskan Yukon River basin, 1986-2005, by coupling a large-scale hydrological model and a process-based methane model: CH
journal, April 2012

  • Lu, Xiaoliang; Zhuang, Qianlai
  • Journal of Geophysical Research: Biogeosciences, Vol. 117, Issue G2
  • DOI: 10.1029/2011JG001843

Comparison of adjoint and analytical Bayesian inversion methods for constraining Asian sources of carbon monoxide using satellite (MOPITT) measurements of CO columns
journal, January 2009

  • Kopacz, Monika; Jacob, Daniel J.; Henze, Daven K.
  • Journal of Geophysical Research, Vol. 114, Issue D4
  • DOI: 10.1029/2007JD009264

Methane bubbling from northern lakes: present and future contributions to the global methane budget
journal, May 2007

  • Walter, Katey M.; Smith, Laurence C.; Stuart Chapin, F.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 365, Issue 1856
  • DOI: 10.1098/rsta.2007.2036

Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: Analysis of the years 2003 and 2004
journal, January 2006

  • Frankenberg, C.; Meirink, J. F.; Bergamaschi, P.
  • Journal of Geophysical Research, Vol. 111, Issue D7
  • DOI: 10.1029/2005JD006235

Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability
journal, January 2011

  • Frankenberg, C.; Aben, I.; Bergamaschi, P.
  • Journal of Geophysical Research, Vol. 116, Issue D4
  • DOI: 10.1029/2010JD014849

Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations
journal, January 2007

  • Bergamaschi, P.; Frankenberg, C.; Meirink, J. F.
  • Journal of Geophysical Research, Vol. 112, Issue D2
  • DOI: 10.1029/2006JD007268

Comparison of CH 4 inversions based on 15 months of GOSAT and SCIAMACHY observations : INVERSE MODELING OF SATELLITE RETRIEVED
journal, October 2013

  • Monteil, Guillaume; Houweling, Sander; Butz, André
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 20
  • DOI: 10.1002/2013JD019760

Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models
journal, February 2002

  • Gurney, Kevin Robert; Law, Rachel M.; Denning, A. Scott
  • Nature, Vol. 415, Issue 6872
  • DOI: 10.1038/415626a

Development and validation of a global database of lakes, reservoirs and wetlands
journal, August 2004


Multidimensional Flux-Form Semi-Lagrangian Transport Schemes
journal, September 1996


Arctic methane sources: Isotopic evidence for atmospheric inputs: ARCTIC METHANE SOURCES
journal, November 2011

  • Fisher, R. E.; Sriskantharajah, S.; Lowry, D.
  • Geophysical Research Letters, Vol. 38, Issue 21
  • DOI: 10.1029/2011GL049319

Atmospheric constraints on the methane emissions from the East Siberian Shelf
journal, January 2016

  • Berchet, Antoine; Bousquet, Philippe; Pison, Isabelle
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 6
  • DOI: 10.5194/acp-16-4147-2016

Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air
journal, August 2011

  • Aydin, Murat; Verhulst, Kristal R.; Saltzman, Eric S.
  • Nature, Vol. 476, Issue 7359
  • DOI: 10.1038/nature10352

Inverse modelling of national and European CH<sub>4</sub> emissions using the atmospheric zoom model TM5
journal, January 2005

  • Bergamaschi, P.; Krol, M.; Dentener, F.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 9
  • DOI: 10.5194/acp-5-2431-2005

Observational constraints on recent increases in the atmospheric CH 4 burden
journal, January 2009

  • Dlugokencky, E. J.; Bruhwiler, L.; White, J. W. C.
  • Geophysical Research Letters, Vol. 36, Issue 18
  • DOI: 10.1029/2009GL039780

Three decades of global methane sources and sinks
journal, September 2013

  • Kirschke, Stefanie; Bousquet, Philippe; Ciais, Philippe
  • Nature Geoscience, Vol. 6, Issue 10
  • DOI: 10.1038/ngeo1955

Global-scale transport of carbon dioxide in the troposphere
journal, January 2008

  • Miyazaki, Kazuyuki; Patra, Prabir K.; Takigawa, Masayuki
  • Journal of Geophysical Research, Vol. 113, Issue D15
  • DOI: 10.1029/2007JD009557

No inter-hemispheric δ13CH4 trend observed
journal, June 2012


CO 2 and CH 4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century
journal, January 2006

  • Zhuang, Qianlai; Melillo, Jerry M.; Sarofim, Marcus C.
  • Geophysical Research Letters, Vol. 33, Issue 17
  • DOI: 10.1029/2006GL026972

Atmospheric methane levels off: Temporary pause or a new steady-state?
journal, January 2003


Contribution of anthropogenic and natural sources to atmospheric methane variability
journal, September 2006


Continuing decline in the growth rate of the atmospheric methane burden
journal, June 1998

  • Dlugokencky, E. J.; Masarie, K. A.; Lang, P. M.
  • Nature, Vol. 393, Issue 6684
  • DOI: 10.1038/30934

Improved analysis-error covariance matrix for high-dimensional variational inversions: application to source estimation using a 3D atmospheric transport model: Improved Analysis-Error Covariance Estimates
journal, January 2015

  • Bousserez, N.; Henze, D. K.; Perkins, A.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 141, Issue 690
  • DOI: 10.1002/qj.2495

Methane fluxes from the sea to the atmosphere across the Siberian shelf seas: CH
journal, June 2016

  • Thornton, Brett F.; Geibel, Marc C.; Crill, Patrick M.
  • Geophysical Research Letters, Vol. 43, Issue 11
  • DOI: 10.1002/2016GL068977

Permafrost carbon-climate feedbacks accelerate global warming
journal, August 2011

  • Koven, C. D.; Ringeval, B.; Friedlingstein, P.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 36
  • DOI: 10.1073/pnas.1103910108

Inferring regional sources and sinks of atmospheric CO 2 from GOSAT XCO 2 data
journal, January 2014

  • Deng, F.; Jones, D. B. A.; Henze, D. K.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 7
  • DOI: 10.5194/acp-14-3703-2014

Inverse modeling of global and regional CH 4 emissions using SCIAMACHY satellite retrievals
journal, January 2009

  • Bergamaschi, Peter; Frankenberg, Christian; Meirink, Jan Fokke
  • Journal of Geophysical Research, Vol. 114, Issue D22
  • DOI: 10.1029/2009JD012287

Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy
journal, January 2004


Methane on the Rise--Again
journal, January 2014


Mapping of North American methane emissions with high spatial resolution by inversion of SCIAMACHY satellite data: NORTH AMERICA METHANE EMISSION INVERSION
journal, June 2014

  • Wecht, Kevin J.; Jacob, Daniel J.; Frankenberg, Christian
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 12
  • DOI: 10.1002/2014JD021551

Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation
journal, October 2001

  • Bey, Isabelle; Jacob, Daniel J.; Yantosca, Robert M.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D19
  • DOI: 10.1029/2001JD000807

Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP)
journal, January 2013


Comparative inverse analysis of satellite (MOPITT) and aircraft (TRACE-P) observations to estimate Asian sources of carbon monoxide: COMPARATIVE INVERSE ANALYSIS
journal, December 2004

  • Heald, Colette L.; Jacob, Daniel J.; Jones, Dylan B. A.
  • Journal of Geophysical Research: Atmospheres, Vol. 109, Issue D23
  • DOI: 10.1029/2004JD005185

Quantifying the impact of model errors on top-down estimates of carbon monoxide emissions using satellite observations
journal, January 2011

  • Jiang, Zhe; Jones, Dylan B. A.; Kopacz, Monika
  • Journal of Geophysical Research, Vol. 116, Issue D15
  • DOI: 10.1029/2010JD015282

Atmospheric CH 4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements : CH
journal, July 2013

  • Bergamaschi, P.; Houweling, S.; Segers, A.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 13
  • DOI: 10.1002/jgrd.50480

Methane Emissions from a Small Wind Shielded Lake Determined by Eddy Covariance, Flux Chambers, Anchored Funnels, and Boundary Model Calculations: A Comparison
journal, April 2012

  • Schubert, Carsten J.; Diem, Torsten; Eugster, Werner
  • Environmental Science & Technology, Vol. 46, Issue 8
  • DOI: 10.1021/es203465x

Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP)
journal, January 2013

  • Wania, R.; Melton, J. R.; Hodson, E. L.
  • Geoscientific Model Development, Vol. 6, Issue 3
  • DOI: 10.5194/gmd-6-617-2013

Atmospheric Methane:  Trends and Cycles of Sources and Sinks
journal, April 2007

  • Khalil, M. Aslam Khan; Butenhoff, Christopher L.; Rasmussen, Reinhold A.
  • Environmental Science & Technology, Vol. 41, Issue 7
  • DOI: 10.1021/es061791t

Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data: IAV OF LIGHTNING CONSTRAINED BY LIS/OTD
journal, October 2012

  • Murray, Lee T.; Jacob, Daniel J.; Logan, Jennifer A.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D20
  • DOI: 10.1029/2012JD017934

Construction of non-diagonal background error covariance matrices for global chemical data assimilation
journal, January 2011

  • Singh, K.; Jardak, M.; Sandu, A.
  • Geoscientific Model Development, Vol. 4, Issue 2
  • DOI: 10.5194/gmd-4-299-2011

A 3-D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997: METHANE INTERANNUAL VARIABILITY
journal, August 2004

  • Wang, James S.; Logan, Jennifer A.; McElroy, Michael B.
  • Global Biogeochemical Cycles, Vol. 18, Issue 3
  • DOI: 10.1029/2003GB002180

Observational constraints on the distribution, seasonality, and environmental predictors of North American boreal methane emissions
journal, February 2014

  • Miller, Scot M.; Worthy, Doug E. J.; Michalak, Anna M.
  • Global Biogeochemical Cycles, Vol. 28, Issue 2
  • DOI: 10.1002/2013GB004580

Soil organic carbon pools in the northern circumpolar permafrost region: SOIL ORGANIC CARBON POOLS
journal, June 2009

  • Tarnocai, C.; Canadell, J. G.; Schuur, E. A. G.
  • Global Biogeochemical Cycles, Vol. 23, Issue 2
  • DOI: 10.1029/2008GB003327

Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: method and comparison with synthesis inversion
journal, January 2008

  • Meirink, J. F.; Bergamaschi, P.; Krol, M. C.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 21
  • DOI: 10.5194/acp-8-6341-2008

Arctic lakes are continuous methane sources to the atmosphere under warming conditions
journal, May 2015