skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lattice engineering through nanoparticle–DNA frameworks

Abstract

Advances in self-assembly over the past decade have demonstrated that nano- and microscale particles can be organized into a large diversity of ordered three-dimensional (3D) lattices. However, the ability to generate different desired lattice types from the same set of particles remains challenging. Here, we show that nanoparticles can be assembled into crystalline and open 3D frameworks by connecting them through designed DNA-based polyhedral frames. The geometrical shapes of the frames, combined with the DNA-assisted binding properties of their vertices, facilitate the well-defined topological connections between particles in accordance with frame geometry. With this strategy, different crystallographic lattices using the same particles can be assembled by introduction of the corresponding DNA polyhedral frames. As a result, this approach should facilitate the rational assembly of nanoscale lattices through the design of the unit cell.

Authors:
 [1];  [1];  [1]; ORCiD logo [1];  [2];  [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., Stony Brook, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1328367
Report Number(s):
BNL-112667-2016-JA
Journal ID: ISSN 1476-1122; KC0403020
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
Nature Materials
Additional Journal Information:
Journal Volume: 15; Journal Issue: 6; Journal ID: ISSN 1476-1122
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; DNA nanotechnology; crystal; self-assembly; Center for Functional Nanomaterials

Citation Formats

Tian, Ye, Zhang, Yugang, Wang, Tong, Xin, Huolin L., Li, Huilin, and Gang, Oleg. Lattice engineering through nanoparticle–DNA frameworks. United States: N. p., 2016. Web. doi:10.1038/NMAT4571.
Tian, Ye, Zhang, Yugang, Wang, Tong, Xin, Huolin L., Li, Huilin, & Gang, Oleg. Lattice engineering through nanoparticle–DNA frameworks. United States. doi:10.1038/NMAT4571.
Tian, Ye, Zhang, Yugang, Wang, Tong, Xin, Huolin L., Li, Huilin, and Gang, Oleg. Mon . "Lattice engineering through nanoparticle–DNA frameworks". United States. doi:10.1038/NMAT4571. https://www.osti.gov/servlets/purl/1328367.
@article{osti_1328367,
title = {Lattice engineering through nanoparticle–DNA frameworks},
author = {Tian, Ye and Zhang, Yugang and Wang, Tong and Xin, Huolin L. and Li, Huilin and Gang, Oleg},
abstractNote = {Advances in self-assembly over the past decade have demonstrated that nano- and microscale particles can be organized into a large diversity of ordered three-dimensional (3D) lattices. However, the ability to generate different desired lattice types from the same set of particles remains challenging. Here, we show that nanoparticles can be assembled into crystalline and open 3D frameworks by connecting them through designed DNA-based polyhedral frames. The geometrical shapes of the frames, combined with the DNA-assisted binding properties of their vertices, facilitate the well-defined topological connections between particles in accordance with frame geometry. With this strategy, different crystallographic lattices using the same particles can be assembled by introduction of the corresponding DNA polyhedral frames. As a result, this approach should facilitate the rational assembly of nanoscale lattices through the design of the unit cell.},
doi = {10.1038/NMAT4571},
journal = {Nature Materials},
number = 6,
volume = 15,
place = {United States},
year = {2016},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 31 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications
journal, January 2010

  • Talapin, Dmitri V.; Lee, Jong-Soo; Kovalenko, Maksym V.
  • Chemical Reviews, Vol. 110, Issue 1
  • DOI: 10.1021/cr900137k

Self-Organization of Plasmonic and Excitonic Nanoparticles into Resonant Chiral Supraparticle Assemblies
journal, November 2014

  • Hu, Tao; Isaacoff, Benjamin P.; Bahng, Joong Hwan
  • Nano Letters, Vol. 14, Issue 12
  • DOI: 10.1021/nl502237f

Substitutional doping in nanocrystal superlattices
journal, August 2015

  • Cargnello, Matteo; Johnston-Peck, Aaron C.; Diroll, Benjamin T.
  • Nature, Vol. 524, Issue 7566
  • DOI: 10.1038/nature14872

DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response
journal, March 2012

  • Kuzyk, Anton; Schreiber, Robert; Fan, Zhiyuan
  • Nature, Vol. 483, Issue 7389
  • DOI: 10.1038/nature10889

Assembly, Structure and Optical Response of Three-Dimensional Dynamically Tunable Multicomponent Superlattices
journal, November 2010

  • Xiong, Huiming; Sfeir, Matthew Y.; Gang, Oleg
  • Nano Letters, Vol. 10, Issue 11
  • DOI: 10.1021/nl102273c

Phase Transition for a Hard Sphere System
journal, November 1957

  • Alder, B. J.; Wainwright, T. E.
  • The Journal of Chemical Physics, Vol. 27, Issue 5
  • DOI: 10.1063/1.1743957

Crystallization of hard-sphere colloids in microgravity
journal, June 1997

  • Zhu, Jixiang; Li, Min; Rogers, R.
  • Nature, Vol. 387, Issue 6636
  • DOI: 10.1038/43141

Driving diffusionless transformations in colloidal crystals using DNA handshaking
journal, January 2012

  • Casey, Marie T.; Scarlett, Raynaldo T.; Benjamin Rogers, W.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2206

Binary nanoparticle superlattices of soft-particle systems
journal, July 2015


Simulation of the adhesive-hard-sphere model
journal, June 1988


Predictive Self-Assembly of Polyhedra into Complex Structures
journal, July 2012


Ionic colloidal crystals of oppositely charged particles
journal, September 2005

  • Leunissen, Mirjam E.; Christova, Christina G.; Hynninen, Antti-Pekka
  • Nature, Vol. 437, Issue 7056
  • DOI: 10.1038/nature03946

Structural diversity in binary nanoparticle superlattices
journal, January 2006

  • Shevchenko, Elena V.; Talapin, Dmitri V.; Kotov, Nicholas A.
  • Nature, Vol. 439, Issue 7072, p. 55-59
  • DOI: 10.1038/nature04414

DNA-guided crystallization of colloidal nanoparticles
journal, January 2008

  • Nykypanchuk, Dmytro; Maye, Mathew M.; van der Lelie, Daniel
  • Nature, Vol. 451, Issue 7178, p. 549-552
  • DOI: 10.1038/nature06560

DNA-programmable nanoparticle crystallization
journal, January 2008

  • Park, Sung Yong; Lytton-Jean, Abigail K. R.; Lee, Byeongdu
  • Nature, Vol. 451, Issue 7178, p. 553-556
  • DOI: 10.1038/nature06508

Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach
journal, December 2011

  • Auyeung, Evelyn; Cutler, Joshua I.; Macfarlane, Robert J.
  • Nature Nanotechnology, Vol. 7, Issue 1
  • DOI: 10.1038/nnano.2011.222

Quasicrystalline order in self-assembled binary nanoparticle superlattices
journal, October 2009

  • Talapin, Dmitri V.; Shevchenko, Elena V.; Bodnarchuk, Maryna I.
  • Nature, Vol. 461, Issue 7266
  • DOI: 10.1038/nature08439

Synthetic diamond and wurtzite structures self-assemble with isotropic pair interactions
journal, March 2007

  • Rechtsman, Mikael C.; Stillinger, Frank H.; Torquato, Salvatore
  • Physical Review E, Vol. 75, Issue 3
  • DOI: 10.1103/PhysRevE.75.031403

Mobile Linkers on DNA-Coated Colloids: Valency without Patches
journal, September 2014


Anisotropy of building blocks and their assembly into complex structures
journal, August 2007

  • Glotzer, Sharon C.; Solomon, Michael J.
  • Nature Materials, Vol. 6, Issue 8, p. 557-562
  • DOI: 10.1038/nmat1949

DNA-nanoparticle superlattices formed from anisotropic building blocks
journal, October 2010

  • Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu
  • Nature Materials, Vol. 9, Issue 11, p. 913-917
  • DOI: 10.1038/nmat2870

Continuous Phase Transformation in Nanocube Assemblies
journal, September 2011


Phase Behavior of Nanoparticles Assembled by DNA Linkers
journal, January 2009


Entropically Patchy Particles: Engineering Valence through Shape Entropy
journal, December 2013

  • van Anders, Greg; Ahmed, N. Khalid; Smith, Ross
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn4057353

Nanoparticle Superlattice Engineering with DNA
journal, October 2011


Shape-Directed Binary Assembly of Anisotropic Nanoplates: A Nanocrystal Puzzle with Shape-Complementary Building Blocks
journal, May 2013

  • Paik, Taejong; Murray, Christopher B.
  • Nano Letters, Vol. 13, Issue 6
  • DOI: 10.1021/nl401370n

Phase diagram of a tetrahedral patchy particle model for different interaction ranges
journal, May 2010

  • Romano, Flavio; Sanz, Eduardo; Sciortino, Francesco
  • The Journal of Chemical Physics, Vol. 132, Issue 18
  • DOI: 10.1063/1.3393777

Association of limited valence patchy particles in two dimensions
journal, January 2010

  • Russo, John; Tartaglia, Piero; Sciortino, Francesco
  • Soft Matter, Vol. 6, Issue 17
  • DOI: 10.1039/c0sm00091d

Directed self-assembly of a colloidal kagome lattice
journal, January 2011

  • Chen, Qian; Bae, Sung Chul; Granick, Steve
  • Nature, Vol. 469, Issue 7330
  • DOI: 10.1038/nature09713

Colloids with valence and specific directional bonding
journal, October 2012


Superlattices assembled through shape-induced directional binding
journal, April 2015

  • Lu, Fang; Yager, Kevin G.; Zhang, Yugang
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7912

Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization
journal, May 2015

  • O’Brien, Matthew N.; Jones, Matthew R.; Lee, Byeongdu
  • Nature Materials, Vol. 14, Issue 8
  • DOI: 10.1038/nmat4293

Site-specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly
journal, September 2013

  • Edwardson, Thomas G. W.; Carneiro, Karina M. M.; McLaughlin, Christopher K.
  • Nature Chemistry, Vol. 5, Issue 10
  • DOI: 10.1038/nchem.1745

Controlling the Number and Positions of Oligonucleotides on Gold Nanoparticle Surfaces
journal, June 2009

  • Suzuki, Kenji; Hosokawa, Kazuo; Maeda, Mizuo
  • Journal of the American Chemical Society, Vol. 131, Issue 22
  • DOI: 10.1021/ja9011386

Shape Alloys of Nanorods and Nanospheres from Self-Assembly
journal, September 2013

  • Ye, Xingchen; Millan, Jaime A.; Engel, Michael
  • Nano Letters, Vol. 13, Issue 10
  • DOI: 10.1021/nl403149u

From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal
journal, September 2009

  • Zheng, Jianping; Birktoft, Jens J.; Chen, Yi
  • Nature, Vol. 461, Issue 7260
  • DOI: 10.1038/nature08274

Programming colloidal phase transitions with DNA strand displacement
journal, February 2015


Folding DNA to create nanoscale shapes and patterns
journal, March 2006


Self-assembly of DNA into nanoscale three-dimensional shapes
journal, May 2009

  • Douglas, Shawn M.; Dietz, Hendrik; Liedl, Tim
  • Nature, Vol. 459, Issue 7245
  • DOI: 10.1038/nature08016

Encapsulation of Gold Nanoparticles in a DNA Origami Cage
journal, January 2011

  • Zhao, Zhao; Jacovetty, Erica L.; Liu, Yan
  • Angewandte Chemie International Edition, Vol. 50, Issue 9
  • DOI: 10.1002/anie.201006818

Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds
journal, December 2013

  • Schreiber, Robert; Do, Jaekwon; Roller, Eva-Maria
  • Nature Nanotechnology, Vol. 9, Issue 1
  • DOI: 10.1038/nnano.2013.253

Nucleic acid junctions and lattices
journal, November 1982


Rapid prototyping of 3D DNA-origami shapes with caDNAno
journal, June 2009

  • Douglas, Shawn M.; Marblestone, Adam H.; Teerapittayanon, Surat
  • Nucleic Acids Research, Vol. 37, Issue 15
  • DOI: 10.1093/nar/gkp436

Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames
journal, May 2015


Periodic lattices of arbitrary nano-objects: modeling and applications for self-assembled systems
journal, December 2013

  • Yager, Kevin G.; Zhang, Yugang; Lu, Fang
  • Journal of Applied Crystallography, Vol. 47, Issue 1
  • DOI: 10.1107/S160057671302832X

Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions
journal, May 2015

  • Zhang, Yugang; Pal, Suchetan; Srinivasan, Babji
  • Nature Materials, Vol. 14, Issue 8
  • DOI: 10.1038/nmat4296

Mechanical instability at finite temperature
journal, January 2015

  • Mao, Xiaoming; Souslov, Anton; Mendoza, Carlos I.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6968

Packing and self-assembly of truncated triangular bipyramids
journal, July 2013


    Works referencing / citing this record:

    Modulating the hierarchical fibrous assembly of Au nanoparticles with atomic precision
    journal, September 2018


    3D DNA Origami Crystals
    journal, May 2018

    • Zhang, Tao; Hartl, Caroline; Frank, Kilian
    • Advanced Materials, Vol. 30, Issue 28
    • DOI: 10.1002/adma.201800273