DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interdomain and Intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide Synthetases

Abstract

Nonribosomal peptide synthetases are large, complex multidomain enzymes responsible for the biosynthesis of a wide range of peptidic natural products. Inherent to synthetase chemistry is the thioester templated mechanism that relies on protein/protein interactions and interdomain dynamics. Several questions related to structure and mechanism remain to be addressed, including the incorporation of accessory domains and intermodule interactions. The inclusion of nonproteinogenic d-amino acids into peptide frameworks is a common and important modification for bioactive nonribosomal peptides. Epimerization domains, embedded in nonribosomal peptide synthetases assembly lines, catalyze the l- to d-amino acid conversion. Here we report the structure of the epimerization domain/peptidyl carrier protein didomain construct from the first module of the cyclic peptide antibiotic gramicidin synthetase. Both holo (phosphopantethiene post-translationally modified) and apo structures were determined, each representing catalytically relevant conformations of the two domains. The structures provide insight into domain–domain recognition, substrate delivery during the assembly line process, in addition to the structural organization of homologous condensation domains, canonical players in all synthetase modules.

Authors:
 [1];  [1];  [1];  [1]
  1. Univ. of Florida, Gainesville, FL (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE
OSTI Identifier:
1328050
Resource Type:
Accepted Manuscript
Journal Name:
ACS Chemical Biology
Additional Journal Information:
Journal Volume: 11; Journal Issue: 8; Journal ID: ISSN 1554-8929
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
ENGLISH
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 59 BASIC BIOLOGICAL SCIENCES; Interfaces; Peptides and proteins; Monomers; Crystal structure; Chemical structure

Citation Formats

Chen, Wei-Hung, Li, Kunhua, Guntaka, Naga Sandhya, and Bruner, Steven D. Interdomain and Intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide Synthetases. United States: N. p., 2016. Web. doi:10.1021/acschembio.6b00332.
Chen, Wei-Hung, Li, Kunhua, Guntaka, Naga Sandhya, & Bruner, Steven D. Interdomain and Intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide Synthetases. United States. https://doi.org/10.1021/acschembio.6b00332
Chen, Wei-Hung, Li, Kunhua, Guntaka, Naga Sandhya, and Bruner, Steven D. Mon . "Interdomain and Intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide Synthetases". United States. https://doi.org/10.1021/acschembio.6b00332. https://www.osti.gov/servlets/purl/1328050.
@article{osti_1328050,
title = {Interdomain and Intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide Synthetases},
author = {Chen, Wei-Hung and Li, Kunhua and Guntaka, Naga Sandhya and Bruner, Steven D.},
abstractNote = {Nonribosomal peptide synthetases are large, complex multidomain enzymes responsible for the biosynthesis of a wide range of peptidic natural products. Inherent to synthetase chemistry is the thioester templated mechanism that relies on protein/protein interactions and interdomain dynamics. Several questions related to structure and mechanism remain to be addressed, including the incorporation of accessory domains and intermodule interactions. The inclusion of nonproteinogenic d-amino acids into peptide frameworks is a common and important modification for bioactive nonribosomal peptides. Epimerization domains, embedded in nonribosomal peptide synthetases assembly lines, catalyze the l- to d-amino acid conversion. Here we report the structure of the epimerization domain/peptidyl carrier protein didomain construct from the first module of the cyclic peptide antibiotic gramicidin synthetase. Both holo (phosphopantethiene post-translationally modified) and apo structures were determined, each representing catalytically relevant conformations of the two domains. The structures provide insight into domain–domain recognition, substrate delivery during the assembly line process, in addition to the structural organization of homologous condensation domains, canonical players in all synthetase modules.},
doi = {10.1021/acschembio.6b00332},
journal = {ACS Chemical Biology},
number = 8,
volume = 11,
place = {United States},
year = {Mon Jun 13 00:00:00 EDT 2016},
month = {Mon Jun 13 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 45 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Gramicidin S synthetase assembly line. a) Cartoon representation of the NRPS enzymes, GrsA and GrsB. The amino acid building blocks are selected and activated by A domains (adenylation domain, blue, activated amino acid shown in subscript). PCP domains (peptidyl carrier protein, orange) use the 4’-phosphopantethiene, post-translational modification tomore » transport acyl-intermediates. C domains (condensation, green) catalyze peptide bond formation between acyl-S-PCP intermediates of adjacent modules. The E domain (epimerization domain, grey) produces D-phenylalanine (the epimerized stereocenter is highlighted, red) through epimerization at the α-carbon. The di-domain fragment described in this study is shown in an orange box. Gramicidin S b) is released from the termination module by a cyclization reaction of the dimeric pentapeptide catalyzed by the Te domain (thioesterase domain, brown).« less

Save / Share:

Works referenced in this record:

Assembly-Line Enzymology for Polyketide and Nonribosomal Peptide Antibiotics:  Logic, Machinery, and Mechanisms
journal, August 2006

  • Fischbach, Michael A.; Walsh, Christopher T.
  • Chemical Reviews, Vol. 106, Issue 8
  • DOI: 10.1021/cr0503097

Nonribosomal peptide synthetases: structures and dynamics
journal, April 2010

  • Strieker, Matthias; Tanović, Alan; Marahiel, Mohamed A.
  • Current Opinion in Structural Biology, Vol. 20, Issue 2, p. 234-240
  • DOI: 10.1016/j.sbi.2010.01.009

The chemical biology of modular biosynthetic enzymes
journal, January 2009

  • Meier, Jordan L.; Burkart, Michael D.
  • Chemical Society Reviews, Vol. 38, Issue 7
  • DOI: 10.1039/b805115c

Biosynthesis of Nonribosomal Peptides
journal, October 2004


Enterobactin: An archetype for microbial iron transport
journal, March 2003

  • Raymond, K. N.; Dertz, E. A.; Kim, S. S.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 7
  • DOI: 10.1073/pnas.0630018100

Molecular mechanisms that confer antibacterial drug resistance
journal, August 2000


Bacterial Iron Sources: From Siderophores to Hemophores
journal, October 2004


Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis
journal, November 1997

  • Marahiel, Mohamed A.; Stachelhaus, Torsten; Mootz, Henning D.
  • Chemical Reviews, Vol. 97, Issue 7
  • DOI: 10.1021/cr960029e

Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology
journal, January 2012

  • Hur, Gene H.; Vickery, Christopher R.; Burkart, Michael D.
  • Natural Product Reports, Vol. 29, Issue 10
  • DOI: 10.1039/c2np20025b

Recent trends in the biochemistry of surfactin
journal, May 1999

  • Peypoux, F.; Bonmatin, J. M.; Wallach, J.
  • Applied Microbiology and Biotechnology, Vol. 51, Issue 5
  • DOI: 10.1007/s002530051432

Bacterial synthesis of d-amino acids
journal, April 2014


Emerging knowledge of regulatory roles of d-amino acids in bacteria
journal, December 2010

  • Cava, Felipe; Lam, Hubert; de Pedro, Miguel A.
  • Cellular and Molecular Life Sciences, Vol. 68, Issue 5
  • DOI: 10.1007/s00018-010-0571-8

Portability of Epimerization Domain and Role of Peptidyl Carrier Protein on Epimerization Activity in Nonribosomal Peptide Synthetases
journal, November 2001

  • Linne, Uwe; Doekel, Sascha; Marahiel, Mohamed A.
  • Biochemistry, Vol. 40, Issue 51
  • DOI: 10.1021/bi011595t

Mutational Analysis of the Epimerization Domain in the Initiation Module PheATE of Gramicidin S Synthetase
journal, May 2000

  • Stachelhaus, Torsten; Walsh, Christopher T.
  • Biochemistry, Vol. 39, Issue 19
  • DOI: 10.1021/bi9929002

Understanding Nature's Strategies for Enzyme-Catalyzed Racemization and Epimerization
journal, April 2002

  • Tanner, Martin E.
  • Accounts of Chemical Research, Vol. 35, Issue 4
  • DOI: 10.1021/ar000056y

Substrate Recognition and Selection by the Initiation Module PheATE of Gramicidin S Synthetase
journal, October 2001

  • Luo, Lusong; Burkart, Michael D.; Stachelhaus, Torsten
  • Journal of the American Chemical Society, Vol. 123, Issue 45
  • DOI: 10.1021/ja0166646

The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains
journal, June 2002

  • Keating, Thomas A.; Marshall, C. Gary; Walsh, Christopher T.
  • Nature Structural Biology
  • DOI: 10.1038/nsb810

Structure of the epimerization domain of tyrocidine synthetase A
journal, April 2014

  • Samel, Stefan A.; Czodrowski, Paul; Essen, Lars-Oliver
  • Acta Crystallographica Section D Biological Crystallography, Vol. 70, Issue 5
  • DOI: 10.1107/S1399004714004398

The structural biology of biosynthetic megaenzymes
journal, August 2015


Getting a handle on peptides
journal, November 2014


Recent advances in engineering nonribosomal peptide assembly lines
journal, January 2016

  • Winn, M.; Fyans, J. K.; Zhuo, Y.
  • Natural Product Reports, Vol. 33, Issue 2
  • DOI: 10.1039/C5NP00099H

Biosynthesis of d -Alanyl-Lipoteichoic Acid:  The Tertiary Structure of apo- d -Alanyl Carrier Protein ,
journal, June 2001

  • Volkman, Brian F.; Zhang, Qunying; Debabov, Dmitri V.
  • Biochemistry, Vol. 40, Issue 27
  • DOI: 10.1021/bi010355a

The crystal structure of BlmI as a model for nonribosomal peptide synthetase peptidyl carrier proteins: The Crystal Structure of BlmI a Type II PCP
journal, December 2013

  • Lohman, Jeremy R.; Ma, Ming; Cuff, Marianne E.
  • Proteins: Structure, Function, and Bioinformatics, Vol. 82, Issue 7
  • DOI: 10.1002/prot.24485

Crystal Structure of the Termination Module of a Nonribosomal Peptide Synthetase
journal, August 2008


Structural Basis for Phosphopantetheinyl Carrier Domain Interactions in the Terminal Module of Nonribosomal Peptide Synthetases
journal, November 2011


Structural and Functional Investigation of the Intermolecular Interaction between NRPS Adenylation and Carrier Protein Domains
journal, February 2012


Structure of PA1221, a Nonribosomal Peptide Synthetase Containing Adenylation and Peptidyl Carrier Protein Domains
journal, April 2012

  • Mitchell, Carter A.; Shi, Ce; Aldrich, Courtney C.
  • Biochemistry, Vol. 51, Issue 15
  • DOI: 10.1021/bi300112e

Structural and Functional Insights into a Peptide Bond-Forming Bidomain from a Nonribosomal Peptide Synthetase
journal, July 2007


Structures of two distinct conformations of holo-non-ribosomal peptide synthetases
journal, January 2016

  • Drake, Eric J.; Miller, Bradley R.; Shi, Ce
  • Nature, Vol. 529, Issue 7585
  • DOI: 10.1038/nature16163

Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase
journal, January 2016

  • Reimer, Janice M.; Aloise, Martin N.; Harrison, Paul M.
  • Nature, Vol. 529, Issue 7585
  • DOI: 10.1038/nature16503

Selective interaction between nonribosomal peptide synthetases is facilitated by short communication-mediating domains
journal, October 2004

  • Hahn, M.; Stachelhaus, T.
  • Proceedings of the National Academy of Sciences, Vol. 101, Issue 44
  • DOI: 10.1073/pnas.0404932101

Crosslinking Studies of Protein-Protein Interactions in Nonribosomal Peptide Biosynthesis
journal, April 2009


Characterization of Sfp, a Bacillus subtilis Phosphopantetheinyl Transferase for Peptidyl Carrier Protein Domains in Peptide Synthetases
journal, February 1998

  • Quadri, Luis E. N.; Weinreb, Paul H.; Lei, Ming
  • Biochemistry, Vol. 37, Issue 6
  • DOI: 10.1021/bi9719861

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery
journal, October 2011

  • Laskowski, Roman A.; Swindells, Mark B.
  • Journal of Chemical Information and Modeling, Vol. 51, Issue 10
  • DOI: 10.1021/ci200227u

Mutational analysis of the C-domain in nonribosomal peptide synthesis: Catalysis of nonribosomal peptide-bond formation
journal, January 2002


Reprogramming Nonribosomal Peptide Synthetases for “Clickable” Amino Acids
journal, July 2014

  • Kries, Hajo; Wachtel, Rudolf; Pabst, Anja
  • Angewandte Chemie International Edition, Vol. 53, Issue 38
  • DOI: 10.1002/anie.201405281

Structure of chloramphenicol acetyltransferase at 1.75-A resolution.
journal, June 1988

  • Leslie, A. G.; Moody, P. C.; Shaw, W. V.
  • Proceedings of the National Academy of Sciences, Vol. 85, Issue 12
  • DOI: 10.1073/pnas.85.12.4133

Structural insights into nonribosomal peptide enzymatic assembly lines
journal, January 2009

  • Koglin, Alexander; Walsh, Christopher T.
  • Natural Product Reports, Vol. 26, Issue 8
  • DOI: 10.1039/b904543k

Inference of Macromolecular Assemblies from Crystalline State
journal, September 2007


Structure of the EntB Multidomain Nonribosomal Peptide Synthetase and Functional Analysis of Its Interaction with the EntE Adenylation Domain
journal, April 2006


Generation of D Amino Acid Residues in Assembly of Arthrofactin by Dual Condensation/Epimerization Domains
journal, November 2005


Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution
journal, January 2007

  • Rausch, Christian; Hoof, Ilka; Weber, Tilmann
  • BMC Evolutionary Biology, Vol. 7, Issue 1
  • DOI: 10.1186/1471-2148-7-78

Works referencing / citing this record:

Structure of a bound peptide phosphonate reveals the mechanism of nocardicin bifunctional thioesterase epimerase-hydrolase half-reactions
journal, August 2019

  • Patel, Ketan D.; d’Andrea, Felipe B.; Gaudelli, Nicole M.
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-11740-6

Structural and mutational analysis of the nonribosomal peptide synthetase heterocyclization domain provides insight into catalysis
journal, December 2016

  • Bloudoff, Kristjan; Fage, Christopher D.; Marahiel, Mohamed A.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 1
  • DOI: 10.1073/pnas.1614191114

The many faces and important roles of protein–protein interactions during non-ribosomal peptide synthesis
journal, January 2018

  • Izoré, Thierry; Cryle, Max J.
  • Natural Product Reports, Vol. 35, Issue 11
  • DOI: 10.1039/c8np00038g

Trapping interactions between catalytic domains and carrier proteins of modular biosynthetic enzymes with chemical probes
journal, January 2018

  • Gulick, Andrew M.; Aldrich, Courtney C.
  • Natural Product Reports, Vol. 35, Issue 11
  • DOI: 10.1039/c8np00044a

Kistamicin biosynthesis reveals the biosynthetic requirements for production of highly crosslinked glycopeptide antibiotics
journal, June 2019


Mechanistic Probes for the Epimerization Domain of Nonribosomal Peptide Synthetases
journal, November 2018


Structural basis for chain release from the enacyloxin polyketide synthase
journal, September 2019


Nonribosomal Peptide Synthesis-Principles and Prospects
journal, March 2017

  • Süssmuth, Roderich D.; Mainz, Andi
  • Angewandte Chemie International Edition, Vol. 56, Issue 14
  • DOI: 10.1002/anie.201609079

Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven
journal, March 2017


Substrate-Induced Conformational Changes of the Tyrocidine Synthetase 1 Adenylation Domain Probed by Intrinsic Trp Fluorescence
journal, April 2017


Genome Features and Secondary Metabolites Biosynthetic Potential of the Class Ktedonobacteria
journal, April 2019


Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture
journal, September 2016

  • Miller, Bradley R.; Drake, Eric J.; Shi, Ce
  • Journal of Biological Chemistry, Vol. 291, Issue 43
  • DOI: 10.1074/jbc.m116.746297

The modules of trans -acyltransferase assembly lines redefined with a central acyl carrier protein
journal, March 2018

  • Vander Wood, Drew A.; Keatinge-Clay, Adrian T.
  • Proteins: Structure, Function, and Bioinformatics, Vol. 86, Issue 6
  • DOI: 10.1002/prot.25493

Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads
journal, January 2020

  • Götze, Sebastian; Stallforth, Pierre
  • Natural Product Reports, Vol. 37, Issue 1
  • DOI: 10.1039/c9np00022d

Structures of a dimodular nonribosomal peptide synthetase reveal conformational flexibility
journal, November 2019

  • Reimer, Janice M.; Eivaskhani, Maximilian; Harb, Ingrid
  • Science, Vol. 366, Issue 6466
  • DOI: 10.1126/science.aaw4388

Structures of a dimodular nonribosomal peptide synthetase reveal conformational flexibility
journal, August 2020

  • Reimer, Janice; Eivaskhani, Maximilian; Harb, Ingrid
  • Acta Crystallographica Section A Foundations and Advances, Vol. 76, Issue a1
  • DOI: 10.1107/s0108767320098682

Crystal structure of the condensation domain from lovastatin polyketide synthase
journal, March 2019


Structure of a bound peptide phosphonate reveals the mechanism of nocardicin bifunctional thioesterase epimerase-hydrolase half-reactions
journal, August 2019

  • Patel, Ketan D.; d’Andrea, Felipe B.; Gaudelli, Nicole M.
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-11740-6

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.