DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags

Abstract

With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb3+ could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb3+ by citrate. No reduction in Tb3+ adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Lastly, our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.

Authors:
 [1];  [2];  [1];  [3];  [3];  [3];  [2];  [4];  [5];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Idaho National Lab. (INL), Idaho Falls, ID (United States)
  3. OLI Systems, Inc., Cedar Knolls, NJ (United States)
  4. The State Univ. of New Jersey, Piscataway, NJ (United States)
  5. Univ. of California Davis, Davis, CA (United States)
Publication Date:
Research Org.:
Idaho National Laboratory (INL), Idaho Falls, ID (United States); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1251424
Alternate Identifier(s):
OSTI ID: 1327934
Report Number(s):
INL/JOU-15-37412; LLNL-JRNL-679871
Journal ID: ISSN 0013-936X
Grant/Contract Number:  
AC52-07NA27344; AC07-05ID14517
Resource Type:
Accepted Manuscript
Journal Name:
Environmental Science and Technology
Additional Journal Information:
Journal Volume: 50; Journal Issue: 5; Journal ID: ISSN 0013-936X
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; rare earth elements; bioadsorption; Caulobacter crescentus; lanthanide binding tags; 59 BASIC BIOLOGICAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY

Citation Formats

Park, Dan M., Reed, David W., Yung, Mimi C., Eslamimanesh, Ali, Lencka, Malgorzata M., Anderko, Andrzej, Fujita, Yoshiko, Riman, Richard E., Navrotsky, Alexandra, and Jiao, Yongqin. Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags. United States: N. p., 2016. Web. doi:10.1021/acs.est.5b06129.
Park, Dan M., Reed, David W., Yung, Mimi C., Eslamimanesh, Ali, Lencka, Malgorzata M., Anderko, Andrzej, Fujita, Yoshiko, Riman, Richard E., Navrotsky, Alexandra, & Jiao, Yongqin. Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags. United States. https://doi.org/10.1021/acs.est.5b06129
Park, Dan M., Reed, David W., Yung, Mimi C., Eslamimanesh, Ali, Lencka, Malgorzata M., Anderko, Andrzej, Fujita, Yoshiko, Riman, Richard E., Navrotsky, Alexandra, and Jiao, Yongqin. Tue . "Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags". United States. https://doi.org/10.1021/acs.est.5b06129. https://www.osti.gov/servlets/purl/1251424.
@article{osti_1251424,
title = {Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags},
author = {Park, Dan M. and Reed, David W. and Yung, Mimi C. and Eslamimanesh, Ali and Lencka, Malgorzata M. and Anderko, Andrzej and Fujita, Yoshiko and Riman, Richard E. and Navrotsky, Alexandra and Jiao, Yongqin},
abstractNote = {With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb3+ could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb3+ by citrate. No reduction in Tb3+ adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Lastly, our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.},
doi = {10.1021/acs.est.5b06129},
journal = {Environmental Science and Technology},
number = 5,
volume = 50,
place = {United States},
year = {Tue Feb 02 00:00:00 EST 2016},
month = {Tue Feb 02 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 82 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Recovery of critical metals using biometallurgy
journal, June 2015


Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives
journal, January 2015


A critical review on solvent extraction of rare earths from aqueous solutions
journal, February 2014


Analytical-Scale Separations of the Lanthanides: a Review of Techniques and Fundamentals
journal, June 2001

  • Nash, Kenneth L.; Jensen, Mark P.
  • Separation Science and Technology, Vol. 36, Issue 5-6
  • DOI: 10.1081/SS-100103649

Metals, minerals and microbes: geomicrobiology and bioremediation
journal, December 2009


Metal cation uptake by yeast: a review
journal, September 1995

  • Blackwell, K. J.; Singleton, I.; Tobin, J. M.
  • Applied Microbiology and Biotechnology, Vol. 43, Issue 4
  • DOI: 10.1007/BF00164757

Interactions of microorganisms with rare earth ions and their utilization for separation and environmental technology
journal, November 2012

  • Moriwaki, Hiroshi; Yamamoto, Hiroki
  • Applied Microbiology and Biotechnology, Vol. 97, Issue 1
  • DOI: 10.1007/s00253-012-4519-9

Selective Biosorption of Lanthanide (La, Eu, Yb) Ions by Pseudomonas aeruginosa
journal, February 1999

  • Texier, Anne-Claire; Andrès, Yves; Le Cloirec, Pierre
  • Environmental Science & Technology, Vol. 33, Issue 3
  • DOI: 10.1021/es9807744

Accumulation of Rare Earth Elements in Various Microorganisms
journal, October 2007


Sorption behavior of europium(III) and curium(III) on the cell surfaces of microorganisms
journal, January 2004


Post-adsorption process of Yb phosphate nano-particle formation by Saccharomyces cerevisiae
journal, September 2012


Metal adsorption onto bacterial surfaces: development of a predictive approach
journal, December 2001


The effect of species diversity on metal adsorption onto bacteria
journal, August 2008


Experimental Measurement of Proton, Cd, Pb, Sr, and Zn Adsorption Onto the Fungal Species Saccharomyces Cerevisiae
journal, August 2006

  • Naeem, A.; Woertz, J. R.; Fein, J. B.
  • Environmental Science & Technology, Vol. 40, Issue 18
  • DOI: 10.1021/es0606935

Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals
journal, February 2001


Engineering of microorganisms towards recovery of rare metal ions
journal, April 2010


Enhanced Bioaccumulation of Heavy Metal Ions by Bacterial Cells Due to Surface Display of Short Metal Binding Peptides
journal, March 1999


Simple Whole-Cell Biodetection and Bioremediation of Heavy Metals Based on an Engineered Lead-Specific Operon
journal, March 2014

  • Wei, Wei; Liu, Xiangzhi; Sun, Peiqing
  • Environmental Science & Technology, Vol. 48, Issue 6
  • DOI: 10.1021/es4046567

Engineering a gold-specific regulon for cell-based visual detection and recovery of gold
journal, January 2012

  • Wei, Wei; Zhu, Tianze; Wang, Yue
  • Chemical Science, Vol. 3, Issue 6
  • DOI: 10.1039/c2sc01119k

Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals
journal, November 2009

  • Nishitani, Takashi; Shimada, Mariko; Kuroda, Kouichi
  • Applied Microbiology and Biotechnology, Vol. 86, Issue 2
  • DOI: 10.1007/s00253-009-2304-1

Bioremediation of soluble heavy metals with recombinant Caulobacter crescentus
journal, May 2010


A protein engineered to bind uranyl selectively and with femtomolar affinity
journal, January 2014

  • Zhou, Lu; Bosscher, Mike; Zhang, Changsheng
  • Nature Chemistry, Vol. 6, Issue 3
  • DOI: 10.1038/nchem.1856

Engineering outer-membrane proteins in Pseudomonas putida for enhanced heavy-metal bioadsorption
journal, April 2000

  • Valls, Marc; de Lorenzo, Vı́ctor; Gonzàlez-Duarte, Roser
  • Journal of Inorganic Biochemistry, Vol. 79, Issue 1-4
  • DOI: 10.1016/S0162-0134(99)00170-1

Development of Bacterium-Based Heavy Metal Biosorbents: Enhanced Uptake of Cadmium and Mercury by Escherichia coli Expressing a Metal Binding Motif
journal, October 1998


Double-Lanthanide-Binding Tags:  Design, Photophysical Properties, and NMR Applications
journal, June 2007

  • Martin, Langdon J.; Hähnke, Martin J.; Nitz, Mark
  • Journal of the American Chemical Society, Vol. 129, Issue 22
  • DOI: 10.1021/ja070480v

A Powerful Combinatorial Screen to Identify High-Affinity Terbium(III)-Binding Peptides
journal, March 2003

  • Nitz, Mark; Franz, Katherine J.; Maglathlin, Rebecca L.
  • ChemBioChem, Vol. 4, Issue 4
  • DOI: 10.1002/cbic.200390047

Engineering Bacterial Two-Component System PmrA/PmrB to Sense Lanthanide Ions
journal, January 2013

  • Liang, Haihua; Deng, Xin; Bosscher, Mike
  • Journal of the American Chemical Society, Vol. 135, Issue 6
  • DOI: 10.1021/ja312032c

Lanthanide-tagged proteins—an illuminating partnership
journal, April 2010


Lanthanide-Binding Tags as Versatile Protein Coexpression Probes
journal, March 2003

  • Franz, Katherine J.; Nitz, Mark; Imperiali, Barbara
  • ChemBioChem, Vol. 4, Issue 4
  • DOI: 10.1002/cbic.200390046

Double-Lanthanide-Binding Tags for Macromolecular Crystallographic Structure Determination
journal, June 2007

  • Silvaggi, Nicholas R.; Martin, Langdon J.; Schwalbe, Harald
  • Journal of the American Chemical Society, Vol. 129, Issue 22
  • DOI: 10.1021/ja070481n

Analysis of the Intact Surface Layer of Caulobacter crescentus by Cryo-Electron Tomography
journal, September 2010

  • Amat, F.; Comolli, L. R.; Nomellini, J. F.
  • Journal of Bacteriology, Vol. 192, Issue 22
  • DOI: 10.1128/JB.00747-10

Development of an HIV-1 Specific Microbicide Using Caulobacter crescentus S-Layer Mediated Display of CD4 and MIP1α
journal, April 2010


S-Layer Anchoring and Localization of an S-Layer-Associated Protease in Caulobacter crescentus
journal, January 2007

  • Ford, M. J.; Nomellini, J. F.; Smit, J.
  • Journal of Bacteriology, Vol. 189, Issue 6
  • DOI: 10.1128/JB.01690-06

Enhanced Neutralization of HIV by Antibodies Displayed on the S-Layer of Caulobacter crescentus
journal, September 2011

  • Duval, Mark; Lewis, Christopher J.; Nomellini, John F.
  • Antimicrobial Agents and Chemotherapy, Vol. 55, Issue 12
  • DOI: 10.1128/AAC.00509-11

S-Layer-Mediated Display of the Immunoglobulin G-Binding Domain of Streptococcal Protein G on the Surface of Caulobacter crescentus: Development of an Immunoactive Reagent
journal, March 2007

  • Nomellini, J. F.; Duncan, G.; Dorocicz, I. R.
  • Applied and Environmental Microbiology, Vol. 73, Issue 10
  • DOI: 10.1128/AEM.02900-06

Modulation of Medium pH by Caulobacter crescentus Facilitates Recovery from Uranium-Induced Growth Arrest
journal, July 2014

  • Park, Dan M.; Jiao, Yongqin
  • Applied and Environmental Microbiology, Vol. 80, Issue 18
  • DOI: 10.1128/AEM.01294-14

Structural Origin of the High Affinity of a Chemically Evolved Lanthanide-Binding Peptide
journal, July 2004

  • Nitz, Mark; Sherawat, Manashi; Franz, Katherine J.
  • Angewandte Chemie International Edition, Vol. 43, Issue 28
  • DOI: 10.1002/anie.200460028

Bioassay Analysis using R
journal, January 2005

  • Ritz, Christian; Streibig, Jens C.
  • Journal of Statistical Software, Vol. 12, Issue 5
  • DOI: 10.18637/jss.v012.i05

A speciation-based model for mixed-solvent electrolyte systems
journal, December 2002


Isolation and comparison of the paracrystalline surface layer proteins of freshwater caulobacters.
journal, March 1992


The S-layer of Caulobacter crescentus: three-dimensional image reconstruction and structure analysis by electron microscopy.
journal, October 1992


Factors controlling in vitro recrystallization of the Caulobacter crescentus paracrystalline S-layer.
journal, October 1997


Recovery of high-value metals from geothermal sites by biosorption and bioaccumulation
journal, May 2014


Benefiting from the Unique Properties of Lanthanide Ions
journal, January 2006

  • Bünzli, Jean-Claude G.
  • Accounts of Chemical Research, Vol. 39, Issue 1
  • DOI: 10.1021/ar0400894

Lanthanide accumulation in the periplasmic space of Escherichia coli B.
journal, January 1991


Recycling of rare earths: a critical review
journal, July 2013


Mechanism of copper induced fluorescence quenching of red fluorescent protein, DsRed
journal, May 2008

  • Rahimi, Yasmeen; Goulding, Ann; Shrestha, Suresh
  • Biochemical and Biophysical Research Communications, Vol. 370, Issue 1
  • DOI: 10.1016/j.bbrc.2008.03.034

Rare earth element release from phosphate minerals in the presence of organic acids
journal, November 2010


Solubility products of the trivalent rare-earth phosphates
journal, January 1991

  • Firsching, F. Henry; Brune, Stephen N.
  • Journal of Chemical & Engineering Data, Vol. 36, Issue 1
  • DOI: 10.1021/je00001a028

Effects of Simulated Rare Earth Recycling Wastewaters on Biological Nitrification
journal, July 2015

  • Fujita, Yoshiko; Barnes, Joni; Eslamimanesh, Ali
  • Environmental Science & Technology, Vol. 49, Issue 16
  • DOI: 10.1021/acs.est.5b01753

Works referencing / citing this record:

Accumulation and Release of Rare Earth Ions by Spores of Bacillus Species and the Location of These Ions in Spores
journal, June 2019

  • Dong, Wei; Li, Siyu; Camilleri, Emily
  • Applied and Environmental Microbiology, Vol. 85, Issue 17
  • DOI: 10.1128/aem.00956-19

Bio-mining of Lanthanides from Red Mud by Green Microalgae
journal, April 2019


Metal ion binding and tolerance of bacteria cells in view of sensor applications
journal, January 2018

  • Jung, Jonas; Blüher, Anja; Lakatos, Mathias
  • Journal of Sensors and Sensor Systems, Vol. 7, Issue 2
  • DOI: 10.5194/jsss-7-433-2018

Biotransformation of lanthanum by Aspergillus niger
journal, November 2018

  • Kang, Xia; Csetenyi, Laszlo; Gadd, Geoffrey Michael
  • Applied Microbiology and Biotechnology, Vol. 103, Issue 2
  • DOI: 10.1007/s00253-018-9489-0

Algae as a green technology for heavy metals removal from various wastewater
journal, May 2019

  • Salama, El-Sayed; Roh, Hyun-Seog; Dev, Subhabrata
  • World Journal of Microbiology and Biotechnology, Vol. 35, Issue 5
  • DOI: 10.1007/s11274-019-2648-3

A new approach to biomining: Bioengineering surfaces for metal recovery from aqueous solutions
journal, November 2019


On the Extraction of Rare Earth Elements from Geothermal Brines
journal, August 2017


A new approach to biomining: Bioengineering surfaces for metal recovery from aqueous solutions
journal, November 2019


Bio-mining of Lanthanides from Red Mud by Green Microalgae
journal, April 2019