skip to main content


Title: Confronting the “Indian summer monsoon response to black carbon aerosol” with the uncertainty in its radiative forcing and beyond

While black carbon aerosols (BC) are believed to modulate the Indian monsoons, the radiative forcing estimate of BC suffers from large uncertainties globally. In this paper, we analyze a suite of idealized experiments forced with a range of BC concentrations that span a large swath of the latest estimates of its global radiative forcing. Within those bounds of uncertainty, summer precipitation over the Indian region increases nearly linearly with the increase in BC burden. The linearity holds even as the BC concentration is increased to levels resembling those hypothesized in nuclear winter scenarios, despite large surface cooling over India and adjoining regions. The enhanced monsoonal circulation is associated with a linear increase in the large-scale meridional tropospheric temperature gradient. The precipitable water over the region also increases linearly with an increase in BC burden, due to increased moisture transport from the Arabian sea to the land areas. The wide range of Indian monsoon response elicited in these experiments emphasizes the need to reduce the uncertainty in BC estimates to accurately quantify their role in modulating the Indian monsoons. Finally, the increase in monsoonal circulation in response to large BC concentrations contrasts earlier findings that the Indian summer monsoon may breakmore » down following a nuclear war.« less
 [1] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Earth Sciences Group. Climate Change Science Inst.
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research: Atmospheres
Additional Journal Information:
Journal Volume: 121; Journal Issue: 13; Journal ID: ISSN 2169-897X
American Geophysical Union
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
54 ENVIRONMENTAL SCIENCES; monsoon; uncertainty in black carbon aerosol; low-level jet; EHP mechanism
OSTI Identifier: