skip to main content


Title: Quench protection studies of the 11-T Nb 3Sn dipole for the LHC upgrade

The planned upgrade of the LHC collimation system foresees additional collimators to be installed in the dispersion suppressor areas. Fermilab and CERN are developing an 11 T Nb 3Sn dipole to replace some 8.33 T-15-m-long Nb-Ti LHC main dipoles providing longitudinal space for the collimators. In case of a quench, the large stored energy and the low copper stabilizer fraction make the protection of the 11 T Nb 3Sn dipoles challenging. This paper presents the results of quench protection analysis, including quench protection heater design and efficiency, quench propagation and coil heating. The numerical results are compared with the experimental data from the 2-m-long Nb 3Sn dipole models. Here, the validated model is used to predict the current decay and hot spot temperature under operating conditions in the LHC and the presently foreseen magnet protection scheme is discussed.
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2]
  1. European Organization for Nuclear Research (CERN), Geneva (Switzerland)
  2. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 1051-8223; 1425906
Grant/Contract Number:
Accepted Manuscript
Journal Name:
IEEE Transactions on Applied Superconductivity
Additional Journal Information:
Journal Volume: 26; Journal Issue: 4; Journal ID: ISSN 1051-8223
Institute of Electrical and Electronics Engineers (IEEE)
Research Org:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Country of Publication:
United States
43 PARTICLE ACCELERATORS; LHC upgrade; quench protection; high field accelerator magnets; delays; resistance heating; superconducting magnets; Large Hadron Collider; temperature measurement; conductors
OSTI Identifier: