skip to main content


Title: The dynamics of aloof baby Skyrmions

The aloof baby Skyrme model is a (2+1)-dimensional theory with solitons that are lightly bound. It is a low-dimensional analogue of a similar Skyrme model in (3+1)- dimensions, where the lightly bound solitons have binding energies comparable to nuclei. A previous study of static solitons in the aloof baby Skyrme model revealed that multi-soliton bound states have a cluster structure, with constituents that preserve their individual identities due to the short-range repulsion and long-range attraction between solitons. Furthermore, there are many different local energy minima that are all well-described by a simple binary species particle model. In this paper we present the first results on soliton dynamics in the aloof baby Skyrme model. Numerical field theory simulations reveal that the lightly bound cluster structure results in a variety of exotic soliton scattering events that are novel in comparison to standard Skyrmion scattering. A dynamical version of the binary species point particle model is shown to provide a good qualitative description of the dynamics.
 [1] ;  [1]
  1. Durham Univ. (United Kingdom)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of High Energy Physics (Online)
Additional Journal Information:
Journal Name: Journal of High Energy Physics (Online); Journal Volume: 2016; Journal Issue: 1; Journal ID: ISSN 1029-8479
Springer Berlin
Research Org:
Princeton Univ., NJ (United States)
Sponsoring Org:
Country of Publication:
United States
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; solitons monopoles and instantons; sigma models
OSTI Identifier: