skip to main content

DOE PAGESDOE PAGES

Title: Strong magnetic correlations to 900 K in single crystals of the trigonal antiferromagnetic insulators SrMn 2 As 2 and CaMn 2 As 2

Crystallographic, electronic transport, thermal, and magnetic properties are reported for SrMn 2As 2 and CaMn 2As 2 single crystals grown using Sn flux. Rietveld refinements of powder x-ray diffraction data show that the two compounds are isostructural and crystallize in the trigonal CaAl 2Si 2-type structure (space group $$P\bar{3}$$ m1), in agreement with the literature. Electrical resistivity ρ versus temperature T measurements demonstrate insulating ground states for both compounds with activation energies of 85 meV for SrMn 2As 2 and 61 meV for CaMn 2As 2. In a local-moment picture, the Mn +2 3d 5 ions are expected to have high-spin S=5/2 with spectroscopic splitting factor g≈2. Magnetic susceptibility χ and heat capacity Cp measurements versus T reveal antiferromagnetic (AFM) transitions at T N=120(2) K and 62(3) K for SrMn 2As 2 and CaMn 2As 2, respectively. The anisotropic χ(T≤T N) data indicate that the hexagonal c axis is the hard axis and hence that the ordered Mn moments are aligned in the ab plane. Finally, the χ(T) data for both compounds and the Cp(T) for SrMn 2As 2 show strong dynamic short-range AFM correlations from T N up to at least 900 K, likely associated with quasi-two-dimensional connectivity of strong AFM exchange interactions between the Mn spins within the corrugated honeycomb Mn layers parallel to the ab plane.
Authors:
 [1] ;  [1] ;  [1] ;  [1]
  1. Ames Lab. and Iowa State Univ., Ames, IA (United States). Dept. of Physics and Astronomy
Publication Date:
Report Number(s):
IS-J-9072
Journal ID: ISSN 2469-9950; PRBMDO
Grant/Contract Number:
AC02-07CH11358
Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 94; Journal Issue: 9; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Research Org:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
OSTI Identifier:
1326842
Alternate Identifier(s):
OSTI ID: 1324865