skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations

Abstract

Reynolds-averaged Navier–Stokes models are not very accurate for high-Reynolds-number compressible jet-in-crossflow interactions. The inaccuracy arises from the use of inappropriate model parameters and model-form errors in the Reynolds-averaged Navier–Stokes model. In this study, the hypothesis is pursued that Reynolds-averaged Navier–Stokes predictions can be significantly improved by using parameters inferred from experimental measurements of a supersonic jet interacting with a transonic crossflow.

Authors:
 [1];  [1];  [2];  [2]
  1. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1325717
Report Number(s):
SAND-2016-0826J
Journal ID: ISSN 0001-1452; 643550
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
AIAA Journal
Additional Journal Information:
Journal Volume: 54; Journal Issue: 8; Journal ID: ISSN 0001-1452
Publisher:
AIAA
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING

Citation Formats

Ray, Jaideep, Lefantzi, Sophia, Arunajatesan, Srinivasan, and Dechant, Lawrence. Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations. United States: N. p., 2016. Web. https://doi.org/10.2514/1.J054758.
Ray, Jaideep, Lefantzi, Sophia, Arunajatesan, Srinivasan, & Dechant, Lawrence. Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations. United States. https://doi.org/10.2514/1.J054758
Ray, Jaideep, Lefantzi, Sophia, Arunajatesan, Srinivasan, and Dechant, Lawrence. Tue . "Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations". United States. https://doi.org/10.2514/1.J054758. https://www.osti.gov/servlets/purl/1325717.
@article{osti_1325717,
title = {Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations},
author = {Ray, Jaideep and Lefantzi, Sophia and Arunajatesan, Srinivasan and Dechant, Lawrence},
abstractNote = {Reynolds-averaged Navier–Stokes models are not very accurate for high-Reynolds-number compressible jet-in-crossflow interactions. The inaccuracy arises from the use of inappropriate model parameters and model-form errors in the Reynolds-averaged Navier–Stokes model. In this study, the hypothesis is pursued that Reynolds-averaged Navier–Stokes predictions can be significantly improved by using parameters inferred from experimental measurements of a supersonic jet interacting with a transonic crossflow.},
doi = {10.2514/1.J054758},
journal = {AIAA Journal},
number = 8,
volume = 54,
place = {United States},
year = {2016},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A non-lineark-? model with realizability for prediction of flows around bluff bodies
journal, January 2003

  • Kimura, Ichiro; Hosoda, Takashi
  • International Journal for Numerical Methods in Fluids, Vol. 42, Issue 8
  • DOI: 10.1002/fld.540

Development and calibration of algebraic nonlinear models for terms in the Reynolds stress transport equations
journal, June 2000

  • Sjögren, Torbjörn; Johansson, Arne V.
  • Physics of Fluids, Vol. 12, Issue 6
  • DOI: 10.1063/1.870404

Separated flow computations with the k-epsilon-v-squared model
journal, April 1995


Renormalization-Group Analysis of Turbulence
journal, October 1986


A new k-ϵ eddy viscosity model for high reynolds number turbulent flows
journal, March 1995


Pressure–strain correlation modelling of complex turbulent flows
journal, November 2000


Evaluation of Two-Equations RANS Models for Simulation of Jet-in-Crossflow Problems
conference, November 2012

  • Arunajatesan, Srinivasan
  • 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
  • DOI: 10.2514/6.2012-1199

Bayesian calibration of a k-ε turbulence model for predictive jet-in-crossflow simulations
conference, June 2014

  • Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan
  • 44th AIAA Fluid Dynamics Conference
  • DOI: 10.2514/6.2014-2085

Special Section on Multidisciplinary Design Optimization: Metamodeling in Multidisciplinary Design Optimization: How Far Have We Really Come?
journal, April 2014

  • Viana, Felipe A. C.; Simpson, Timothy W.; Balabanov, Vladimir
  • AIAA Journal, Vol. 52, Issue 4
  • DOI: 10.2514/1.J052375

Dimensionality Reduction for Complex Models via Bayesian Compressive Sensing
journal, January 2014


Variable-complexity response surface aerodynamic design of an HSCT wing
conference, February 2013

  • Giunta, Anthony; Narducci, Robert; Burgee, Susan
  • 13th Applied Aerodynamics Conference
  • DOI: 10.2514/6.1995-1886

The Interaction of Jets with Crossflow
journal, January 2013


Experiments and Computations of Roll Torque Induced by Vortex-Fin Interaction
conference, June 2012

  • Peterson, Carl; Wolfe, Walter; Payne, Jeffrey
  • 42nd AIAA Aerospace Sciences Meeting and Exhibit
  • DOI: 10.2514/6.2004-1069

Penetration of a Transverse Supersonic Jet into a Subsonic Compressible Crossflow
journal, February 2005

  • Beresh, Steven J.; Henfling, John F.; Erven, Rocky J.
  • AIAA Journal, Vol. 43, Issue 2
  • DOI: 10.2514/1.9919

Turbulent Characteristics of a Transverse Supersonic Jet in a Subsonic Compressible Crossflow
journal, November 2005

  • Beresh, Steven J.; Henfling, John F.; Erven, Rocky J.
  • AIAA Journal, Vol. 43, Issue 11
  • DOI: 10.2514/1.14575

Crossplane Velocimetry of a Transverse Supersonic Jet in a Transonic Crossflow
journal, December 2006

  • Beresh, Steven J.; Henfling, John F.; Erven, Rocky J.
  • AIAA Journal, Vol. 44, Issue 12
  • DOI: 10.2514/1.22311

Planar Velocimetry of Jet/Fin Interaction on a Full-Scale Flight Vehicle Configuration
journal, August 2007

  • Beresh, Steven J.; Heineck, James T.; Walker, Stephen M.
  • AIAA Journal, Vol. 45, Issue 8
  • DOI: 10.2514/1.26485

Simulations of High Speed Turbulent Jets in Crossflows
conference, June 2012

  • Chai, Xiaochuan; Mahesh, Krishnan
  • 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
  • DOI: 10.2514/6.2011-650

Dynamics of sonic jet injection into supersonic crossflow
journal, January 2010


DDES of Aeropropulsive Flows Based on an Extended k-? RANS Model
conference, January 2013

  • Rodebaugh, Gregory; Brinckman, Kevin; Dash, Sanford
  • 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
  • DOI: 10.2514/6.2013-393

Scalar Fluctuation Modeling for High-Speed Aeropropulsive Flows
journal, May 2007

  • Brinckman, Kevin W.; Calhoon, William H.; Dash, Sanford M.
  • AIAA Journal, Vol. 45, Issue 5
  • DOI: 10.2514/1.21075

Bayesian estimates of parameter variability in the k–ε turbulence model
journal, February 2014


The decay power law in grid-generated turbulence
journal, October 1990


Turbulence statistics in fully developed channel flow at low Reynolds number
journal, April 1987


Further experiments on the evolution of turbulent stresses and scales in uniformly sheared turbulence
journal, July 1989


Uncertainty Quantification Applied to the k-epsilon Model of Turbulence Using the Probabilistic Collocation Method
conference, June 2012

  • Platteeuw, P. D. A.; Loeven, G. J. A.; Bijl, H.
  • 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
    16th AIAA/ASME/AHS Adaptive Structures Conference
    10t
  • DOI: 10.2514/6.2008-2150

Modeling Structural Uncertainties in Reynolds-Averaged Computations of Shock/Boundary Layer Interactions
conference, June 2012

  • Emory, Michael; Pecnik, Rene; Iaccarino, Gianluca
  • 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
  • DOI: 10.2514/6.2011-479

Bayesian uncertainty analysis with applications to turbulence modeling
journal, September 2011

  • Cheung, Sai Hung; Oliver, Todd A.; Prudencio, Ernesto E.
  • Reliability Engineering & System Safety, Vol. 96, Issue 9
  • DOI: 10.1016/j.ress.2010.09.013

Quantification of Structural Uncertainties in the k -w Turbulence Model
conference, June 2012

  • Dow, Eric; Wang, Qiqi
  • 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
  • DOI: 10.2514/6.2011-1762

Predictive RANS simulations via Bayesian Model-Scenario Averaging
journal, October 2014


New Approaches in Turbulence and Transition Modeling Using Data-driven Techniques
conference, January 2015

  • Duraisamy, Karthikeyan; Zhang, Ze J.; Singh, Anand Pratap
  • 53rd AIAA Aerospace Sciences Meeting
  • DOI: 10.2514/6.2015-1284

A Machine Learning Strategy to Assist Turbulence Model Development
conference, January 2015

  • Tracey, Brendan D.; Duraisamy, Karthikeyan; Alonso, Juan J.
  • 53rd AIAA Aerospace Sciences Meeting
  • DOI: 10.2514/6.2015-1287

Machine Learning Methods for Data-Driven Turbulence Modeling
conference, June 2015

  • Zhang, Ze Jia; Duraisamy, Karthikeyan
  • 22nd AIAA Computational Fluid Dynamics Conference
  • DOI: 10.2514/6.2015-2460

Quantification of Turbulence Modeling Uncertainties Using Full Field Inversion
conference, June 2015

  • Parish, Eric; Duraisamy, Karthikeyan
  • 22nd AIAA Computational Fluid Dynamics Conference
  • DOI: 10.2514/6.2015-2459

Sensitivity Analysis and Multiobjective Optimization for LES Numerical Parameters
journal, January 2008

  • Jouhaud, J. -C.; Sagaut, P.; Enaux, B.
  • Journal of Fluids Engineering, Vol. 130, Issue 2
  • DOI: 10.1115/1.2829602

Bayesian calibration of the constants of the <mml:math altimg="si13.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>k</mml:mi></mml:math>–<mml:math altimg="si14.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>ε</mml:mi></mml:math> turbulence model for a CFD model of street canyon flow
journal, September 2014

  • Guillas, Serge; Glover, Nina; Malki-Epshtein, Liora
  • Computer Methods in Applied Mechanics and Engineering, Vol. 279
  • DOI: 10.1016/j.cma.2014.06.008

DRAM: Efficient adaptive MCMC
journal, December 2006


Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME
journal, January 2010

  • Soetaert, Karline; Petzoldt, Thomas
  • Journal of Statistical Software, Vol. 33, Issue 3
  • DOI: 10.18637/jss.v033.i03

GA : A Package for Genetic Algorithms in R
journal, January 2013


Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review
journal, June 1996


A stopping criterion for Markov chains when generating independent random graphs
journal, December 2014

  • Ray, J.; Pinar, A.; Seshadhri, C.
  • Journal of Complex Networks, Vol. 3, Issue 2
  • DOI: 10.1093/comnet/cnu041

    Works referencing / citing this record:

    Prediction of Reynolds stresses in high-Mach-number turbulent boundary layers using physics-informed machine learning
    journal, December 2018

    • Wang, Jian-Xun; Huang, Junji; Duan, Lian
    • Theoretical and Computational Fluid Dynamics, Vol. 33, Issue 1
    • DOI: 10.1007/s00162-018-0480-2