skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Four-channel optically pumped atomic magnetometer for magnetoencephalography

Abstract

We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. As a result, this module will serve as a building block of an array for magnetic source localization.

Authors:
 [1];  [1];  [1];  [1];  [2];  [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Charles Stark Draper Lab., Cambridge, MA (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
National Institutes of Health (NIH); USDOE
OSTI Identifier:
1325716
Report Number(s):
SAND-2016-5979J
Journal ID: ISSN 1094-4087; OPEXFF; 642490
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Optics Express
Additional Journal Information:
Journal Volume: 24; Journal Issue: 14; Journal ID: ISSN 1094-4087
Publisher:
Optical Society of America (OSA)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; coherent optical effects; diffractive optics; polarimetry; Faraday effect; magneto-optic systems; biological sensing and sensors

Citation Formats

Colombo, Anthony P., Carter, Tony R., Borna, Amir, Jau, Yuan -Yu, Johnson, Cort N., Dagel, Amber L., and Schwindt, Peter D. D.. Four-channel optically pumped atomic magnetometer for magnetoencephalography. United States: N. p., 2016. Web. https://doi.org/10.1364/OE.24.015403.
Colombo, Anthony P., Carter, Tony R., Borna, Amir, Jau, Yuan -Yu, Johnson, Cort N., Dagel, Amber L., & Schwindt, Peter D. D.. Four-channel optically pumped atomic magnetometer for magnetoencephalography. United States. https://doi.org/10.1364/OE.24.015403
Colombo, Anthony P., Carter, Tony R., Borna, Amir, Jau, Yuan -Yu, Johnson, Cort N., Dagel, Amber L., and Schwindt, Peter D. D.. Wed . "Four-channel optically pumped atomic magnetometer for magnetoencephalography". United States. https://doi.org/10.1364/OE.24.015403. https://www.osti.gov/servlets/purl/1325716.
@article{osti_1325716,
title = {Four-channel optically pumped atomic magnetometer for magnetoencephalography},
author = {Colombo, Anthony P. and Carter, Tony R. and Borna, Amir and Jau, Yuan -Yu and Johnson, Cort N. and Dagel, Amber L. and Schwindt, Peter D. D.},
abstractNote = {We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. As a result, this module will serve as a building block of an array for magnetic source localization.},
doi = {10.1364/OE.24.015403},
journal = {Optics Express},
number = 14,
volume = 24,
place = {United States},
year = {2016},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Biomagnetism using SQUIDs: status and perspectives
journal, February 2006


Recent advances in magnetocardiography
journal, October 2004


Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain
journal, April 1993

  • Hämäläinen, Matti; Hari, Riitta; Ilmoniemi, Risto J.
  • Reviews of Modern Physics, Vol. 65, Issue 2
  • DOI: 10.1103/RevModPhys.65.413

A laser-pumped magnetometer for the mapping of human cardiomagnetic fields
journal, March 2003


Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor
journal, January 2003


Cesium coherent population trapping magnetometer for cardiosignal detection in an unshielded environment
journal, January 2007

  • Belfi, J.; Bevilacqua, G.; Biancalana, V.
  • Journal of the Optical Society of America B, Vol. 24, Issue 9
  • DOI: 10.1364/JOSAB.24.002357

A room temperature 19-channel magnetic field mapping device for cardiac signals
journal, October 2009

  • Bison, G.; Castagna, N.; Hofer, A.
  • Applied Physics Letters, Vol. 95, Issue 17, Article No. 173701
  • DOI: 10.1063/1.3255041

Human MCG measurements with a high-sensitivity potassium atomic magnetometer
journal, May 2012


Magnetocardiography with a modular spin-exchange relaxation-free atomic magnetometer array
journal, April 2012

  • Wyllie, R.; Kauer, M.; Smetana, G. S.
  • Physics in Medicine and Biology, Vol. 57, Issue 9, p. 2619-2632
  • DOI: 10.1088/0031-9155/57/9/2619

A compact, high performance atomic magnetometer for biomedical applications
journal, November 2013


Optical multichannel room temperature magnetic field imaging system for clinical application
journal, January 2014

  • Lembke, G.; Erné, S. N.; Nowak, H.
  • Biomedical Optics Express, Vol. 5, Issue 3
  • DOI: 10.1364/BOE.5.000876

Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications
journal, September 2010

  • Knappe, Svenja; Sander, Tilmann H.; Kosch, Olaf
  • Applied Physics Letters, Vol. 97, Issue 13, Article No. 133703
  • DOI: 10.1063/1.3491548

Optical magnetometer array for fetal magnetocardiography
journal, January 2012

  • Wyllie, Robert; Kauer, Matthew; Wakai, Ronald T.
  • Optics Letters, Vol. 37, Issue 12, p. 2247-2249
  • DOI: 10.1364/OL.37.002247

Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers
journal, June 2015


High-Sensitivity Atomic Magnetometer Unaffected by Spin-Exchange Relaxation
journal, September 2002


A subfemtotesla multichannel atomic magnetometer
journal, April 2003

  • Kominis, I. K.; Kornack, T. W.; Allred, J. C.
  • Nature, Vol. 422, Issue 6932
  • DOI: 10.1038/nature01484

Magnetoencephalography with an atomic magnetometer
journal, November 2006

  • Xia, H.; Ben-Amar Baranga, A.; Hoffman, D.
  • Applied Physics Letters, Vol. 89, Issue 21, Article No. 211104
  • DOI: 10.1063/1.2392722

Spin-exchange-relaxation-free magnetometry with Cs vapor
journal, March 2008


Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer
journal, October 2010

  • Dang, H. B.; Maloof, A. C.; Romalis, M. V.
  • Applied Physics Letters, Vol. 97, Issue 15
  • DOI: 10.1063/1.3491215

Multi-channel atomic magnetometer for magnetoencephalography: A configuration study
journal, April 2014


Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer
journal, December 2010

  • Johnson, Cort; Schwindt, Peter D. D.; Weisend, Michael
  • Applied Physics Letters, Vol. 97, Issue 24
  • DOI: 10.1063/1.3522648

Multi-sensor magnetoencephalography with atomic magnetometers
journal, August 2013

  • Johnson, Cort N.; Schwindt, P. D. D.; Weisend, M.
  • Physics in Medicine and Biology, Vol. 58, Issue 17, p. 6065-6077
  • DOI: 10.1088/0031-9155/58/17/6065

Magnetoencephalography with a chip-scale atomic magnetometer
journal, January 2012

  • Sander, T. H.; Preusser, J.; Mhaskar, R.
  • Biomedical Optics Express, Vol. 3, Issue 5, p. 981-990
  • DOI: 10.1364/BOE.3.000981

Magnetoencephalography of Epilepsy with a Microfabricated Atomic Magnetrode
journal, October 2014


A plateau in the sensitivity of a compact optically pumped atomic magnetometer
journal, May 2014

  • Mizutani, Natsuhiko; Okano, Kazuhisa; Ban, Kazuhiro
  • AIP Advances, Vol. 4, Issue 5
  • DOI: 10.1063/1.4880498

Signal-space projection method for separating MEG or EEG into components
journal, March 1997

  • Uusitalo, M. A.; Ilmoniemi, R. J.
  • Medical & Biological Engineering & Computing, Vol. 35, Issue 2
  • DOI: 10.1007/BF02534144

Suppression of Interference and Artifacts by the Signal Space Separation Method
journal, July 2003


Effects of spin-exchange collisions in a high-density alkali-metal vapor in low magnetic fields
journal, February 2005


Radiation trapping in rubidium optical pumping at low buffer-gas pressures
journal, February 2007


Experimental Study of Zeeman Light Shifts in Weak Magnetic Fields
journal, February 1972


Light-shift-induced spin echoes in a J =1/2 atomic ground state
journal, August 1990


Magnetic resonance reversals in optically pumped alkali-metal vapor
journal, May 2007


Theory of spin-exchange optical pumping of 3 He and 129 Xe
journal, August 1998


Skew light propagation in optically thick optical pumping cells
journal, September 2002


A low-noise ferrite magnetic shield
journal, May 2007

  • Kornack, T. W.; Smullin, S. J.; Lee, S. -K.
  • Applied Physics Letters, Vol. 90, Issue 22
  • DOI: 10.1063/1.2737357

    Works referencing / citing this record:

    Observation and analysis of the spatial frequency response of an atomic magnetometer
    journal, January 2019

    • Dong, Hai-Feng; Yin, Ling-Xiao; Li, Ai-Xian
    • Journal of Applied Physics, Vol. 125, Issue 2
    • DOI: 10.1063/1.5049609

    Characterizing atomic magnetic gradiometers for fetal magnetocardiography
    journal, August 2019

    • Sulai, I. A.; DeLand, Z. J.; Bulatowicz, M. D.
    • Review of Scientific Instruments, Vol. 90, Issue 8
    • DOI: 10.1063/1.5091007

    Localizing on-scalp MEG sensors using an array of magnetic dipole coils
    journal, May 2018


    Non-Invasive Functional-Brain-Imaging with an OPM-based Magnetoencephalography System
    journal, January 2020