skip to main content

DOE PAGESDOE PAGES

Title: The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Double-probe measurements from BOSS galaxy clustering and Planck data – towards an analysis without informative priors

Here, we develop a new methodology called double-probe analysis with the aim of minimizing informative priors in the estimation of cosmological parameters. We extract the dark-energy-model-independent cosmological constraints from the joint data sets of Baryon Oscillation Spectroscopic Survey (BOSS) galaxy sample and Planck cosmic microwave background (CMB) measurement. We measure the mean values and covariance matrix of {R, l a, Ω bh 2, n s, log(A s), Ω k, H(z), D A(z), f(z)σ 8(z)}, which give an efficient summary of Planck data and 2-point statistics from BOSS galaxy sample, where R = √Ω mH 2 0, and l a = πr(z *)/r s(z *), z * is the redshift at the last scattering surface, and r(z *) and r s(z *) denote our comoving distance to z * and sound horizon at z * respectively. The advantage of this method is that we do not need to put informative priors on the cosmological parameters that galaxy clustering is not able to constrain well, i.e. Ω bh 2 and n s. Using our double-probe results, we obtain Ω m = 0.304 ± 0.009, H 0 = 68.2 ± 0.7, and σ 8 = 0.806 ± 0.014 assuming ΛCDM; and Ω kmore » = 0.002 ± 0.003 and w = –1.00 ± 0.07 assuming owCDM. The results show no tension with the flat ΛCDM cosmological paradigm. By comparing with the full-likelihood analyses with fixed dark energy models, we demonstrate that the double-probe method provides robust cosmological parameter constraints which can be conveniently used to study dark energy models. We extend our study to measure the sum of neutrino mass and obtain Σm ν < 0.10/0.22 (68%/95%) assuming ΛCDM and Σm ν < 0.26/0.52 (68%/95%) assuming wCDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS.« less
Authors:
 [1] ;  [2] ;  [3] ;  [4] ;  [5] ;  [5] ; ;  [6] ;  [7] ;  [8] ;  [8] ;  [9] ;  [10] ;  [11] ;  [12] ;  [13] ;  [14] ;  [15] ;  [16] ;  [17] more »;  [13] ;  [18] ;  [19] ;  [9] ;  [20] ;  [21] ;  [22] ;  [23] ;  [24] ;  [16] ;  [25] « less
  1. Instituto de Astrofisica de Canarias (IAC), Tenerife (Spain); Univ. de La Laguna, Tenerife (Spain); Univ. Autonoma de Madrid, Madrid (Spain); Leibniz-Institut fur Astrophysik Potsdam (AIP), Potsdam (Germany)
  2. Univ. Autonoma de Madrid, Madrid (Spain); Leibniz-Institut fur Astrophysik Potsdam (AIP), Potsdam (Germany)
  3. Instituto de Astrofisica de Canarias (IAC), Tenerife (Spain); Univ. de La Laguna, Tenerife (Spain)
  4. Univ. de Barcelona (IEEC-UB), Barcelona (Spain)
  5. Chinese Academy of Sciences (CAS), Beijing (China); Univ. of Portsmouth, Portsmouth (United Kingdom)
  6. Univ. Autonoma de Madrid, Madrid (Spain); Campus of International Excellence UAM+CSIC, Madrid (Spain)
  7. Univ. Autonoma de Madrid, Madrid (Spain); Campus of International Excellence UAM+CSIC, Madrid (Spain); Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain)
  8. Brookhaven National Lab. (BNL), Upton, NY (United States)
  9. Carnegie Mellon Univ., Pittsburgh, PA (United States)
  10. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of Portsmouth, Portsmouth (United Kingdom)
  11. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)
  12. Sorbonne Univ., Paris (France); Univ. Pierre et Marie Curie, Paris (France)
  13. Univ.-Sternwarte Munchen, Munich (Germany); Max-Planck-Institut fur extraterrestrische Physik, Garching (Germany)
  14. Carnegie Mellon Univ., Pittsburgh, PA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  15. Leibniz-Institut fur Astrophysik Potsdam (AIP), Potsdam (Germany); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  16. Univ. of Portsmouth, Portsmouth (United Kingdom)
  17. Sejong Univ., Seoul (Korea)
  18. Kansas State Univ., Manhattan, KS (United States); Hia State Univ., Tbilisi (Georgia); Univ. of Portsmouth, Portsmouth (United Kingdom)
  19. Max-Planck-Institut fur extraterrestische Physik, Garching (Germany)
  20. Ohio Univ., Athens, OH (United States)
  21. New York Univ., New York, NY (United States)
  22. Univ. of St. Andrews, St. Andrews (United Kingdom)
  23. Univ. Nacional Autonoma de Mexico (Mexico)
  24. Univ. of Utah, Salt Lake City, UT (United States)
  25. King's College, Wilkes Barre, PA (United States)
Publication Date:
Report Number(s):
BNL-112528-2016-JA
Journal ID: ISSN 0035-8711; KA2301020
Grant/Contract Number:
SC0012704
Type:
Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 468; Journal Issue: 4; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; cosmology: observations; distance scale; large-scale structure of Universe; cosmological parameters
OSTI Identifier:
1324283

Pellejero-Ibanez, Marco, Chuang, Chia -Hsun, Rubino-Martin, J. A., Cuesta, Antonio J., Wang, Yuting, Zhao, Gongbo, Ashley J. Ross, Rodriquez-Torres, Sergio, Prada, Francisco, Slosar, Anze, Vazquez, Jose A., Alam, Shadab, Beutler, Florian, Eisenstein, Daniel J., Gil-Martin, Hector, Grieb, Jan Niklas, Ho, Shirley, Kitaura, Francisco -Shu, Percival, Will J., Rossi, Graziano, Salazar-Albornoz, Salvador, Samushia, Lado, Sanchez, Ariel G., Sapathy, Siddharth, Seo, Hee -Jong, Tinker, Jeremy L., Tojeiro, Rita, Vargas-Magana, Mariana, Brownstein, Joel R., Nichol, Robert C., and Olmstead, Matthew D.. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Double-probe measurements from BOSS galaxy clustering and Planck data – towards an analysis without informative priors. United States: N. p., Web. doi:10.1093/mnras/stx751.
Pellejero-Ibanez, Marco, Chuang, Chia -Hsun, Rubino-Martin, J. A., Cuesta, Antonio J., Wang, Yuting, Zhao, Gongbo, Ashley J. Ross, Rodriquez-Torres, Sergio, Prada, Francisco, Slosar, Anze, Vazquez, Jose A., Alam, Shadab, Beutler, Florian, Eisenstein, Daniel J., Gil-Martin, Hector, Grieb, Jan Niklas, Ho, Shirley, Kitaura, Francisco -Shu, Percival, Will J., Rossi, Graziano, Salazar-Albornoz, Salvador, Samushia, Lado, Sanchez, Ariel G., Sapathy, Siddharth, Seo, Hee -Jong, Tinker, Jeremy L., Tojeiro, Rita, Vargas-Magana, Mariana, Brownstein, Joel R., Nichol, Robert C., & Olmstead, Matthew D.. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Double-probe measurements from BOSS galaxy clustering and Planck data – towards an analysis without informative priors. United States. doi:10.1093/mnras/stx751.
Pellejero-Ibanez, Marco, Chuang, Chia -Hsun, Rubino-Martin, J. A., Cuesta, Antonio J., Wang, Yuting, Zhao, Gongbo, Ashley J. Ross, Rodriquez-Torres, Sergio, Prada, Francisco, Slosar, Anze, Vazquez, Jose A., Alam, Shadab, Beutler, Florian, Eisenstein, Daniel J., Gil-Martin, Hector, Grieb, Jan Niklas, Ho, Shirley, Kitaura, Francisco -Shu, Percival, Will J., Rossi, Graziano, Salazar-Albornoz, Salvador, Samushia, Lado, Sanchez, Ariel G., Sapathy, Siddharth, Seo, Hee -Jong, Tinker, Jeremy L., Tojeiro, Rita, Vargas-Magana, Mariana, Brownstein, Joel R., Nichol, Robert C., and Olmstead, Matthew D.. 2016. "The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Double-probe measurements from BOSS galaxy clustering and Planck data – towards an analysis without informative priors". United States. doi:10.1093/mnras/stx751. https://www.osti.gov/servlets/purl/1324283.
@article{osti_1324283,
title = {The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Double-probe measurements from BOSS galaxy clustering and Planck data – towards an analysis without informative priors},
author = {Pellejero-Ibanez, Marco and Chuang, Chia -Hsun and Rubino-Martin, J. A. and Cuesta, Antonio J. and Wang, Yuting and Zhao, Gongbo and Ashley J. Ross and Rodriquez-Torres, Sergio and Prada, Francisco and Slosar, Anze and Vazquez, Jose A. and Alam, Shadab and Beutler, Florian and Eisenstein, Daniel J. and Gil-Martin, Hector and Grieb, Jan Niklas and Ho, Shirley and Kitaura, Francisco -Shu and Percival, Will J. and Rossi, Graziano and Salazar-Albornoz, Salvador and Samushia, Lado and Sanchez, Ariel G. and Sapathy, Siddharth and Seo, Hee -Jong and Tinker, Jeremy L. and Tojeiro, Rita and Vargas-Magana, Mariana and Brownstein, Joel R. and Nichol, Robert C. and Olmstead, Matthew D.},
abstractNote = {Here, we develop a new methodology called double-probe analysis with the aim of minimizing informative priors in the estimation of cosmological parameters. We extract the dark-energy-model-independent cosmological constraints from the joint data sets of Baryon Oscillation Spectroscopic Survey (BOSS) galaxy sample and Planck cosmic microwave background (CMB) measurement. We measure the mean values and covariance matrix of {R, la, Ωbh2, ns, log(As), Ωk, H(z), DA(z), f(z)σ8(z)}, which give an efficient summary of Planck data and 2-point statistics from BOSS galaxy sample, where R = √ΩmH20, and la = πr(z*)/rs(z*), z* is the redshift at the last scattering surface, and r(z*) and rs(z*) denote our comoving distance to z* and sound horizon at z* respectively. The advantage of this method is that we do not need to put informative priors on the cosmological parameters that galaxy clustering is not able to constrain well, i.e. Ωbh2 and ns. Using our double-probe results, we obtain Ωm = 0.304 ± 0.009, H0 = 68.2 ± 0.7, and σ8 = 0.806 ± 0.014 assuming ΛCDM; and Ωk = 0.002 ± 0.003 and w = –1.00 ± 0.07 assuming owCDM. The results show no tension with the flat ΛCDM cosmological paradigm. By comparing with the full-likelihood analyses with fixed dark energy models, we demonstrate that the double-probe method provides robust cosmological parameter constraints which can be conveniently used to study dark energy models. We extend our study to measure the sum of neutrino mass and obtain Σmν < 0.10/0.22 (68%/95%) assuming ΛCDM and Σmν < 0.26/0.52 (68%/95%) assuming wCDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS.},
doi = {10.1093/mnras/stx751},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 4,
volume = 468,
place = {United States},
year = {2016},
month = {3}
}