skip to main content

DOE PAGESDOE PAGES

Title: Wind turbine power production and annual energy production depend on atmospheric stability and turbulence

Using detailed upwind and nacelle-based measurements from a General Electric (GE) 1.5sle model with a 77 m rotor diameter, we calculate power curves and annual energy production (AEP) and explore their sensitivity to different atmospheric parameters to provide guidelines for the use of stability and turbulence filters in segregating power curves. The wind measurements upwind of the turbine include anemometers mounted on a 135 m meteorological tower as well as profiles from a lidar. We calculate power curves for different regimes based on turbulence parameters such as turbulence intensity (TI) as well as atmospheric stability parameters such as the bulk Richardson number ( R B). We also calculate AEP with and without these atmospheric filters and highlight differences between the results of these calculations. The power curves for different TI regimes reveal that increased TI undermines power production at wind speeds near rated, but TI increases power production at lower wind speeds at this site, the US Department of Energy (DOE) National Wind Technology Center (NWTC). Similarly, power curves for different R B regimes reveal that periods of stable conditions produce more power at wind speeds near rated and periods of unstable conditions produce more power at lower wind speeds. AEP results suggest that calculations without filteringmore » for these atmospheric regimes may overestimate the AEP. Because of statistically significant differences between power curves and AEP calculated with these turbulence and stability filters for this turbine at this site, we suggest implementing an additional step in analyzing power performance data to incorporate effects of atmospheric stability and turbulence across the rotor disk.« less
Authors:
 [1] ;  [2] ; ORCiD logo [3] ;  [4] ;  [3]
  1. Univ. of Colorado, Boulder, CO (United States). Dept. of Atmospheric and Oceanic Sciences (ATOC)
  2. Univ. of Colorado, Boulder, CO (United States). Dept. of Atmospheric and Oceanic Sciences (ATOC); National Renewable Energy Lab. (NREL), Golden, CO (United States)
  3. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  4. V-Bar, LLC, Golden, CO (United States)
Publication Date:
Report Number(s):
NREL/JA-5D00-66360
Journal ID: ISSN 2366-7451
Grant/Contract Number:
AC36-08GO28308
Type:
Accepted Manuscript
Journal Name:
Wind Energy Science (Online)
Additional Journal Information:
Journal Name: Wind Energy Science (Online); Journal Volume: 1; Journal Issue: 2; Journal ID: ISSN 2366-7451
Publisher:
European Wind Energy Association - Copernicus
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Wind and Water Technologies Office (EE-4W)
Country of Publication:
United States
Language:
English
Subject:
17 WIND ENERGY; wind energy; power curve; atmospheric stability; turbulence intensity; annual energy production
OSTI Identifier:
1324230