DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization

Abstract

In this work, we present a joint experimental and molecular dynamics simulations effort to understand and map the crystallization behavior of polyhedral nanoparticles assembled via the interaction of DNA surface ligands. In these systems, we systematically investigated the interplay between the effects of particle core (via the particle symmetry and particle size) and ligands (via the ligand length) on crystallization behavior. This investigation revealed rich phase diagrams, previously unobserved phase transitions in polyhedral crystallization behavior, and an unexpected symmetry breaking in the ligand distribution on a particle surface. To understand these results, we introduce the concept of a zone of anisotropy, or the portion of the phase space where the anisotropy of the particle is preserved in the crystallization behavior. Through comparison of the zone of anisotropy for each particle we develop a foundational roadmap to guide future investigations.

Authors:
ORCiD logo [1];  [2];  [1];  [3];  [3];  [4];  [3]
  1. Department of Chemistry, Northwestern University, Evanston, IL 60208,, International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208,
  2. Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208,
  3. Department of Chemistry, Northwestern University, Evanston, IL 60208,, International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208,, Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208,
  4. X-Ray Science Division, Argonne National Laboratory, Argonne, IL 60439
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Bio-Inspired Energy Science (CBES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1321026
Alternate Identifier(s):
OSTI ID: 1388772
Grant/Contract Number:  
SC0000989; AC02-06CH11357
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 113 Journal Issue: 38; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 59 BASIC BIOLOGICAL SCIENCES; 36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; catalysis (homogeneous); solar (photovoltaic); bio-inspired; charge transport; mesostructured materials; materials and chemistry by design; synthesis (novel materials); synthesis (self-assembly)

Citation Formats

O’Brien, Matthew N., Girard, Martin, Lin, Hai-Xin, Millan, Jaime A., Olvera de la Cruz, Monica, Lee, Byeongdu, and Mirkin, Chad A. Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization. United States: N. p., 2016. Web. doi:10.1073/pnas.1611808113.
O’Brien, Matthew N., Girard, Martin, Lin, Hai-Xin, Millan, Jaime A., Olvera de la Cruz, Monica, Lee, Byeongdu, & Mirkin, Chad A. Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization. United States. https://doi.org/10.1073/pnas.1611808113
O’Brien, Matthew N., Girard, Martin, Lin, Hai-Xin, Millan, Jaime A., Olvera de la Cruz, Monica, Lee, Byeongdu, and Mirkin, Chad A. Tue . "Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization". United States. https://doi.org/10.1073/pnas.1611808113.
@article{osti_1321026,
title = {Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization},
author = {O’Brien, Matthew N. and Girard, Martin and Lin, Hai-Xin and Millan, Jaime A. and Olvera de la Cruz, Monica and Lee, Byeongdu and Mirkin, Chad A.},
abstractNote = {In this work, we present a joint experimental and molecular dynamics simulations effort to understand and map the crystallization behavior of polyhedral nanoparticles assembled via the interaction of DNA surface ligands. In these systems, we systematically investigated the interplay between the effects of particle core (via the particle symmetry and particle size) and ligands (via the ligand length) on crystallization behavior. This investigation revealed rich phase diagrams, previously unobserved phase transitions in polyhedral crystallization behavior, and an unexpected symmetry breaking in the ligand distribution on a particle surface. To understand these results, we introduce the concept of a zone of anisotropy, or the portion of the phase space where the anisotropy of the particle is preserved in the crystallization behavior. Through comparison of the zone of anisotropy for each particle we develop a foundational roadmap to guide future investigations.},
doi = {10.1073/pnas.1611808113},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 38,
volume = 113,
place = {United States},
year = {Tue Sep 06 00:00:00 EDT 2016},
month = {Tue Sep 06 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1073/pnas.1611808113

Citation Metrics:
Cited by: 54 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

General purpose molecular dynamics simulations fully implemented on graphics processing units
journal, May 2008

  • Anderson, Joshua A.; Lorenz, Chris D.; Travesset, A.
  • Journal of Computational Physics, Vol. 227, Issue 10
  • DOI: 10.1016/j.jcp.2008.01.047

Structural diversity in binary nanoparticle superlattices
journal, January 2006

  • Shevchenko, Elena V.; Talapin, Dmitri V.; Kotov, Nicholas A.
  • Nature, Vol. 439, Issue 7072, p. 55-59
  • DOI: 10.1038/nature04414

DNA-mediated nanoparticle crystallization into Wulff polyhedra
journal, November 2013

  • Auyeung, Evelyn; Li, Ting I. N. G.; Senesi, Andrew J.
  • Nature, Vol. 505, Issue 7481
  • DOI: 10.1038/nature12739

Dense packings of the Platonic and Archimedean solids
journal, August 2009


The role of interparticle and external forces in nanoparticle assembly
journal, July 2008

  • Min, Younjin; Akbulut, Mustafa; Kristiansen, Kai
  • Nature Materials, Vol. 7, Issue 7
  • DOI: 10.1038/nmat2206

Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures
journal, June 2011

  • Jones, Matthew R.; Osberg, Kyle D.; Macfarlane, Robert J.
  • Chemical Reviews, Vol. 111, Issue 6
  • DOI: 10.1021/cr1004452

Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices
journal, November 2011

  • Henzie, Joel; Grünwald, Michael; Widmer-Cooper, Asaph
  • Nature Materials, Vol. 11, Issue 2
  • DOI: 10.1038/nmat3178

Diamond family of nanoparticle superlattices
journal, February 2016


Phase behavior of colloidal superballs: Shape interpolation from spheres to cubes
journal, June 2010

  • Batten, Robert D.; Stillinger, Frank H.; Torquato, Salvatore
  • Physical Review E, Vol. 81, Issue 6
  • DOI: 10.1103/PhysRevE.81.061105

Programming colloidal phase transitions with DNA strand displacement
journal, February 2015


From Artificial Atoms to Nanocrystal Molecules: Preparation and Properties of More Complex Nanostructures
journal, March 2010


Nanoparticle Superlattice Engineering with DNA
journal, October 2011


Continuous Phase Transformation in Nanocube Assemblies
journal, September 2011


Nucleic Acid-Modified Nanostructures as Programmable Atom Equivalents: Forging a New “Table of Elements”
journal, May 2013

  • Macfarlane, Robert J.; O'Brien, Matthew N.; Petrosko, Sarah Hurst
  • Angewandte Chemie International Edition, Vol. 52, Issue 22
  • DOI: 10.1002/anie.201209336

Oligonucleotide Flexibility Dictates Crystal Quality in DNA-Programmable Nanoparticle Superlattices
journal, September 2014

  • Senesi, Andrew J.; Eichelsdoerfer, Daniel J.; Brown, Keith A.
  • Advanced Materials, Vol. 26, Issue 42
  • DOI: 10.1002/adma.201402548

Modular and Chemically Responsive Oligonucleotide “Bonds” in Nanoparticle Superlattices
journal, October 2015

  • Barnaby, Stacey N.; Thaner, Ryan V.; Ross, Michael B.
  • Journal of the American Chemical Society, Vol. 137, Issue 42
  • DOI: 10.1021/jacs.5b07908

Programmable materials and the nature of the DNA bond
journal, February 2015


Nanoscale Forces and Their Uses in Self-Assembly
journal, July 2009

  • Bishop, Kyle J. M.; Wilmer, Christopher E.; Soh, Siowling
  • Small, Vol. 5, Issue 14
  • DOI: 10.1002/smll.200900358

Modeling the Crystallization of Spherical Nucleic Acid Nanoparticle Conjugates with Molecular Dynamics Simulations
journal, April 2012

  • Li, Ting I. N. G.; Sknepnek, Rastko; Macfarlane, Robert J.
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl300679e

DNA-guided crystallization of colloidal nanoparticles
journal, January 2008

  • Nykypanchuk, Dmytro; Maye, Mathew M.; van der Lelie, Daniel
  • Nature, Vol. 451, Issue 7178, p. 549-552
  • DOI: 10.1038/nature06560

Universal Noble Metal Nanoparticle Seeds Realized Through Iterative Reductive Growth and Oxidative Dissolution Reactions
journal, May 2014

  • O’Brien, Matthew N.; Jones, Matthew R.; Brown, Keith A.
  • Journal of the American Chemical Society, Vol. 136, Issue 21
  • DOI: 10.1021/ja503509k

Nonadditivity of nanoparticle interactions
journal, October 2015


Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization
journal, May 2015

  • O’Brien, Matthew N.; Jones, Matthew R.; Lee, Byeongdu
  • Nature Materials, Vol. 14, Issue 8
  • DOI: 10.1038/nmat4293

Dynamics and Statics of DNA-Programmable Nanoparticle Self-Assembly and Crystallization
journal, May 2011


Entropy-Driven Crystallization Behavior in DNA-Mediated Nanoparticle Assembly
journal, June 2015


Small Angle X-ray Scattering for Nanoparticle Research
journal, April 2016


DNA-nanoparticle superlattices formed from anisotropic building blocks
journal, October 2010

  • Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu
  • Nature Materials, Vol. 9, Issue 11, p. 913-917
  • DOI: 10.1038/nmat2870

High-Throughput, Algorithmic Determination of Nanoparticle Structure from Electron Microscopy Images
journal, October 2015

  • Laramy, Christine R.; Brown, Keith A.; O’Brien, Matthew N.
  • ACS Nano, Vol. 9, Issue 12
  • DOI: 10.1021/acsnano.5b05968

Strong scaling of general-purpose molecular dynamics simulations on GPUs
journal, July 2015

  • Glaser, Jens; Nguyen, Trung Dac; Anderson, Joshua A.
  • Computer Physics Communications, Vol. 192
  • DOI: 10.1016/j.cpc.2015.02.028

DNA-programmable nanoparticle crystallization
journal, January 2008

  • Park, Sung Yong; Lytton-Jean, Abigail K. R.; Lee, Byeongdu
  • Nature, Vol. 451, Issue 7178, p. 553-556
  • DOI: 10.1038/nature06508

Organization of 'nanocrystal molecules' using DNA
journal, August 1996

  • Alivisatos, A. Paul; Johnsson, Kai P.; Peng, Xiaogang
  • Nature, Vol. 382, Issue 6592
  • DOI: 10.1038/382609a0

Mesophase behaviour of polyhedral particles
journal, February 2011

  • Agarwal, Umang; Escobedo, Fernando A.
  • Nature Materials, Vol. 10, Issue 3
  • DOI: 10.1038/nmat2959

Predictive Self-Assembly of Polyhedra into Complex Structures
journal, July 2012


Transmutable nanoparticles with reconfigurable surface ligands
journal, February 2016


Small-angle scattering of particle assemblies
journal, July 2015


Developments in understanding and controlling self assembly of DNA-functionalized colloids
journal, January 2013

  • Michele, Lorenzo Di; Eiser, Erika
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 9
  • DOI: 10.1039/c3cp43841d

A DNA-based method for rationally assembling nanoparticles into macroscopic materials
journal, August 1996

  • Mirkin, Chad A.; Letsinger, Robert L.; Mucic, Robert C.
  • Nature, Vol. 382, Issue 6592, p. 607-609
  • DOI: 10.1038/382607a0

Phase Diagram and Structural Diversity of a Family of Truncated Cubes: Degenerate Close-Packed Structures and Vacancy-Rich States
journal, July 2013


Phase diagram of colloidal hard superballs: from cubes via spheres to octahedra
journal, January 2012

  • Ni, Ran; Gantapara, Anjan Prasad; de Graaf, Joost
  • Soft Matter, Vol. 8, Issue 34
  • DOI: 10.1039/c2sm25813g

Entropically Patchy Particles: Engineering Valence through Shape Entropy
journal, December 2013

  • van Anders, Greg; Ahmed, N. Khalid; Smith, Ross
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn4057353

Self-Assembly of Tetrahedral CdSe Nanocrystals: Effective “Patchiness” via Anisotropic Steric Interaction
journal, April 2014

  • Boles, Michael A.; Talapin, Dmitri V.
  • Journal of the American Chemical Society, Vol. 136, Issue 16
  • DOI: 10.1021/ja501596z