DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal equation of state of Molybdenum determined from in situ synchrotron X-ray diffraction with laser-heated diamond anvil cells

Abstract

Here we report that the equation of state (EOS) of Mo is obtained by an integrated technique of laser-heated DAC and synchrotron X-ray diffraction. The cold compression and thermal expansion of Mo have been measured up to 80 GPa at 300 K, and 92 GPa at 3470 K, respectively. The P-V-T data have been treated with both thermodynamic and Mie–Gruneisen-Debye methods for the thermal EOS inversion. The results are self-consistent and in agreement with the static multi-anvil compression data of Litasov et al. (J. Appl. Phys. 113, 093507 (2013)) and the theoretical data of Zeng et al. (J. Phys. Chem. B 114, 298 (2010)). Furthermore, these high pressure and high temperature (HPHT) data with high precision firstly complement and close the gap between the resistive heating and the shock compression experiment.

Authors:
 [1];  [1];  [1];  [2];  [3];  [1];  [1];  [1]
  1. Jilin Univ., Changchun (China)
  2. Argonne National Lab., Carnegie Institution of Washington, Argonne, IL (United States). High-Pressure Collaborative Access Team
  3. Novosibirsk State Univ., Novosibirsk (Russia); V.S. Sobolev Institute of Geology and Mineralogy, Novosibirsk (Russia)
Publication Date:
Research Org.:
Carnegie Inst. of Science, Argonne, IL (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC)
OSTI Identifier:
1311403
Grant/Contract Number:  
NA0001974; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Huang, Xiaoli, Li, Fangfei, Zhou, Qiang, Meng, Yue, Litasov, Konstantin D., Wang, Xin, Liu, Bingbing, and Cui, Tian. Thermal equation of state of Molybdenum determined from in situ synchrotron X-ray diffraction with laser-heated diamond anvil cells. United States: N. p., 2016. Web. doi:10.1038/srep19923.
Huang, Xiaoli, Li, Fangfei, Zhou, Qiang, Meng, Yue, Litasov, Konstantin D., Wang, Xin, Liu, Bingbing, & Cui, Tian. Thermal equation of state of Molybdenum determined from in situ synchrotron X-ray diffraction with laser-heated diamond anvil cells. United States. https://doi.org/10.1038/srep19923
Huang, Xiaoli, Li, Fangfei, Zhou, Qiang, Meng, Yue, Litasov, Konstantin D., Wang, Xin, Liu, Bingbing, and Cui, Tian. Wed . "Thermal equation of state of Molybdenum determined from in situ synchrotron X-ray diffraction with laser-heated diamond anvil cells". United States. https://doi.org/10.1038/srep19923. https://www.osti.gov/servlets/purl/1311403.
@article{osti_1311403,
title = {Thermal equation of state of Molybdenum determined from in situ synchrotron X-ray diffraction with laser-heated diamond anvil cells},
author = {Huang, Xiaoli and Li, Fangfei and Zhou, Qiang and Meng, Yue and Litasov, Konstantin D. and Wang, Xin and Liu, Bingbing and Cui, Tian},
abstractNote = {Here we report that the equation of state (EOS) of Mo is obtained by an integrated technique of laser-heated DAC and synchrotron X-ray diffraction. The cold compression and thermal expansion of Mo have been measured up to 80 GPa at 300 K, and 92 GPa at 3470 K, respectively. The P-V-T data have been treated with both thermodynamic and Mie–Gruneisen-Debye methods for the thermal EOS inversion. The results are self-consistent and in agreement with the static multi-anvil compression data of Litasov et al. (J. Appl. Phys. 113, 093507 (2013)) and the theoretical data of Zeng et al. (J. Phys. Chem. B 114, 298 (2010)). Furthermore, these high pressure and high temperature (HPHT) data with high precision firstly complement and close the gap between the resistive heating and the shock compression experiment.},
doi = {10.1038/srep19923},
journal = {Scientific Reports},
number = ,
volume = 6,
place = {United States},
year = {Wed Feb 17 00:00:00 EST 2016},
month = {Wed Feb 17 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

First-principles electronic thermal pressure of metal Au and Pt
journal, September 2002


Theoretical investigation of the high pressure structure, lattice dynamics, phase transition, and thermal equation of state of titanium metal
journal, May 2010

  • Hu, Cui-E; Zeng, Zhao-Yi; Zhang, Lin
  • Journal of Applied Physics, Vol. 107, Issue 9
  • DOI: 10.1063/1.3407560

High-pressure–temperature phase diagram and the equation of state of beryllium
journal, November 2012


Double-sided laser heating system at HPCAT for in situ x-ray diffraction at high pressures and high temperatures
journal, June 2006


Elasticity of MgO and a primary pressure scale to 55 GPa
journal, November 2000

  • Zha, C. -S.; Mao, H. -k.; Hemley, R. J.
  • Proceedings of the National Academy of Sciences, Vol. 97, Issue 25
  • DOI: 10.1073/pnas.240466697

Ab initio equation of state for the body-centered-cubic phase of iron at high pressure and temperature
journal, September 2008


High-pressure equations of state of Al, Cu, Ta, and W
journal, October 2005

  • Chijioke, Akobuije D.; Nellis, W. J.; Silvera, Isaac F.
  • Journal of Applied Physics, Vol. 98, Issue 7
  • DOI: 10.1063/1.2071449

Experimental and theoretical studies on the elasticity of molybdenum to 12 GPa
journal, August 2009

  • Liu, Wei; Liu, Qiong; Whitaker, Matthew L.
  • Journal of Applied Physics, Vol. 106, Issue 4
  • DOI: 10.1063/1.3197135

Ferromagnesian postperovskite silicates in the D'' layer of the Earth
journal, November 2004

  • Mao, W. L.; Shen, G.; Prakapenka, V. B.
  • Proceedings of the National Academy of Sciences, Vol. 101, Issue 45
  • DOI: 10.1073/pnas.0407135101

Equation of state of a high-pressure phase of Gd 3 Ga 5 O 12
journal, February 2011


Lattice Dynamics and Thermodynamics of Molybdenum from First-Principles Calculations
journal, January 2010

  • Zeng, Zhao-Yi; Hu, Cui-E; Cai, Ling-Cang
  • The Journal of Physical Chemistry B, Vol. 114, Issue 1
  • DOI: 10.1021/jp9073637

Post-Perovskite Phase Transition in MgSiO3
journal, May 2004


Compression curves of transition metals in the Mbar range: Experiments and projector augmented-wave calculations
journal, September 2008


Melting of transition metals at high pressure and the influence of liquid frustration: The early metals Ta and Mo
journal, November 2007


X-ray diffraction measurements of Mo melting to 119 GPa and the high pressure phase diagram
journal, March 2009

  • Santamaría-Pérez, D.; Ross, M.; Errandonea, D.
  • The Journal of Chemical Physics, Vol. 130, Issue 12
  • DOI: 10.1063/1.3082030

New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team
journal, July 2015

  • Meng, Yue; Hrubiak, Rostislav; Rod, Eric
  • Review of Scientific Instruments, Vol. 86, Issue 7
  • DOI: 10.1063/1.4926895

Elastic Constants of Tantalum, Tungsten, and Molybdenum
journal, May 1963


Shock compression of tungsten and molybdenum
journal, February 1992

  • Hixson, R. S.; Fritz, J. N.
  • Journal of Applied Physics, Vol. 71, Issue 4
  • DOI: 10.1063/1.351203

Shock compression of tungsten and molybdenum
journal, February 1992

  • Hixson, R. S.; Fritz, J. N.
  • Journal of Applied Physics, Vol. 71, Issue 4
  • DOI: 10.1063/1.351203

High-pressure melting curve of helium and neon: Deviations from corresponding states theory
journal, June 2010

  • Santamaría-Pérez, David; Mukherjee, Goutam Dev; Schwager, Beate
  • Physical Review B, Vol. 81, Issue 21
  • DOI: 10.1103/PhysRevB.81.214101

New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team
journal, July 2015

  • Meng, Yue; Hrubiak, Rostislav; Rod, Eric
  • Review of Scientific Instruments, Vol. 86, Issue 7
  • DOI: 10.1063/1.4926895

Calculated Equation of State of Al, Cu, Ta, Mo, and W to 1000 GPa
journal, April 2000


Thermal equation of state and thermodynamic properties of molybdenum at high pressures
journal, March 2013

  • Litasov, Konstantin D.; Dorogokupets, Peter I.; Ohtani, Eiji
  • Journal of Applied Physics, Vol. 113, Issue 9
  • DOI: 10.1063/1.4794127

Thermoelastic equation of state of molybdenum
journal, October 2000

  • Zhao, Yusheng; Lawson, Andrew C.; Zhang, Jiangzhong
  • Physical Review B, Vol. 62, Issue 13
  • DOI: 10.1103/PhysRevB.62.8766

Self-consistent pressure scales based on the equations of state for ruby, diamond, MgO, B2–NaCl, as well as Au, Pt, and other metals to 4 Mbar and 3000 K
journal, February 2013

  • Sokolova, T. S.; Dorogokupets, P. I.; Litasov, K. D.
  • Russian Geology and Geophysics, Vol. 54, Issue 2
  • DOI: 10.1016/j.rgg.2013.01.005

Phase diagram up to 105 GPa and mechanical strength of HfO 2
journal, October 2010


Ferromagnesian postperovskite silicates in the D'' layer of the Earth
journal, November 2004

  • Mao, W. L.; Shen, G.; Prakapenka, V. B.
  • Proceedings of the National Academy of Sciences, Vol. 101, Issue 45
  • DOI: 10.1073/pnas.0407135101

The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source
journal, September 2008


X-ray diffraction measurements of Mo melting to 119 GPa and the high pressure phase diagram
journal, March 2009

  • Santamaría-Pérez, D.; Ross, M.; Errandonea, D.
  • The Journal of Chemical Physics, Vol. 130, Issue 12
  • DOI: 10.1063/1.3082030

Molybdenum sound velocity and shear modulus softening under shock compression
journal, May 2014


Two-dimensional detector software: From real detector to idealised image or two-theta scan
journal, January 1996

  • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
  • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
  • DOI: 10.1080/08957959608201408

Elasticity of MgO and a primary pressure scale to 55 GPa
journal, November 2000

  • Zha, C. -S.; Mao, H. -k.; Hemley, R. J.
  • Proceedings of the National Academy of Sciences, Vol. 97, Issue 25
  • DOI: 10.1073/pnas.240466697

Structure of Liquid Iron at Pressures up to 58 GPa
journal, May 2004


Lattice Dynamics and Thermodynamics of Molybdenum from First-Principles Calculations
journal, January 2010

  • Zeng, Zhao-Yi; Hu, Cui-E; Cai, Ling-Cang
  • The Journal of Physical Chemistry B, Vol. 114, Issue 1
  • DOI: 10.1021/jp9073637

Analysis of P-V-T data: constraints on the thermoelastic properties of high-pressure minerals
journal, August 1996


Works referencing / citing this record:

Thermal equation of state of ruthenium characterized by resistively heated diamond anvil cell
journal, October 2019


Microstructures define melting of molybdenum at high pressures
journal, March 2017

  • Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14562

Thermal equation of state of ruthenium characterized by resistively heated diamond anvil cell
journal, October 2019


Microstructures define melting of molybdenum at high pressures
journal, March 2017

  • Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14562