skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements

Abstract

Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally-derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. In this study, we illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound FeSi over a wide range of temperature. Our results agree well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials.

Authors:
 [1];  [2];  [2];  [3]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Univ. at Buffalo, NY (United States)
  3. Duke Univ., Durham, NC (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1311243
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physics. Condensed Matter
Additional Journal Information:
Journal Volume: 28; Journal Issue: 38; Journal ID: ISSN 0953-8984
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; anharmonicity; aluminum; FeSi; free energy; entropy; inelastic neutron scattering; thermal expansion

Citation Formats

Bansal, Dipanshu, Aref, Amjad, Dargush, Gary, and Delaire, Olivier A. Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements. United States: N. p., 2016. Web. https://doi.org/10.1088/0953-8984/28/38/385201.
Bansal, Dipanshu, Aref, Amjad, Dargush, Gary, & Delaire, Olivier A. Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements. United States. https://doi.org/10.1088/0953-8984/28/38/385201
Bansal, Dipanshu, Aref, Amjad, Dargush, Gary, and Delaire, Olivier A. Wed . "Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements". United States. https://doi.org/10.1088/0953-8984/28/38/385201. https://www.osti.gov/servlets/purl/1311243.
@article{osti_1311243,
title = {Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements},
author = {Bansal, Dipanshu and Aref, Amjad and Dargush, Gary and Delaire, Olivier A.},
abstractNote = {Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally-derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. In this study, we illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound FeSi over a wide range of temperature. Our results agree well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials.},
doi = {10.1088/0953-8984/28/38/385201},
journal = {Journal of Physics. Condensed Matter},
number = 38,
volume = 28,
place = {United States},
year = {2016},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Vibrational thermodynamics of materials
journal, May 2010


Analysis of thermodynamic properties of molybdenum and tungsten at high temperatures
journal, September 1991


Electronic, quasiharmonic, and anharmonic entropies of transition metals
journal, September 1992


Theory of Anharmonic Crystals. I. General Formulation
journal, January 1969


Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2
journal, June 2013


Giant anharmonic phonon scattering in PbTe
journal, June 2011

  • Delaire, O.; Ma, J.; Marty, K.
  • Nature Materials, Vol. 10, Issue 8, p. 614-619
  • DOI: 10.1038/nmat3035

Phonon localization drives polar nanoregions in a relaxor ferroelectric
journal, April 2014

  • Manley, M. E.; Lynn, J. W.; Abernathy, D. L.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4683

Metallization of vanadium dioxide driven by large phonon entropy
journal, November 2014

  • Budai, John D.; Hong, Jiawang; Manley, Michael E.
  • Nature, Vol. 515, Issue 7528
  • DOI: 10.1038/nature13865

Enhanced spin-phonon-electronic coupling in a 5d oxide
journal, November 2015

  • Calder, S.; Lee, J. H.; Stone, M. B.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9916

Orbitally driven giant phonon anharmonicity in SnSe
journal, October 2015

  • Li, C. W.; Hong, J.; May, A. F.
  • Nature Physics, Vol. 11, Issue 12
  • DOI: 10.1038/nphys3492

Electron-phonon coupling and thermal transport in the thermoelectric compound Mo 3 Sb 7 x Te x
journal, December 2015


Green’s-function approach to linear response in solids
journal, May 1987


Adiabatic density-functional perturbation theory
journal, August 1995


Perturbation expansion of variational principles at arbitrary order
journal, August 1995


First principles phonon calculations in materials science
journal, November 2015


Ab initio calculations of phonons in LiNbO 3
journal, January 2000


Entropy Driven Stabilization of Energetically Unstable Crystal Structures Explained from First Principles Theory
journal, March 2008


First-Principles Theory of Anharmonicity and the Inverse Isotope Effect in Superconducting Palladium-Hydride Compounds
journal, October 2013


Temperature-Dependent Classical Phonons from Efficient Nondynamical Simulations
journal, March 2013


Phonon Quasiparticles and Anharmonic Free Energy in Complex Systems
journal, February 2014


Anharmonic vibrational properties in periodic systems: energy, electron-phonon coupling, and stress
journal, April 2013


Temperature-dependent effective third-order interatomic force constants from first principles
journal, October 2013


Understanding Anharmonicity in fcc Materials: From its Origin to ab initio Strategies beyond the Quasiharmonic Approximation
journal, May 2015


Ab initio up to the melting point: Anharmonicity and vacancies in aluminum
journal, April 2009


Thermodynamics of anharmonic crystals with application to Nb
journal, September 1975


The perfect crystal, thermal vacancies and the thermal expansion coefficient of aluminium
journal, July 2000


Thermoelastic and texture behavior of aluminum at high pressure and high temperature investigated by in situ neutron diffraction
journal, May 2004

  • He, Duanwei; Zhao, Yusheng; Daemen, L. L.
  • Journal of Applied Physics, Vol. 95, Issue 9
  • DOI: 10.1063/1.1688460

Anharmonicity-induced phonon broadening in aluminum at high temperatures
journal, November 2010


Ab initio study of the thermodynamic properties of nonmagnetic elementary fcc metals: Exchange-correlation-related error bars and chemical trends
journal, July 2007


Phonon softening and metallization of a narrow-gap semiconductor by thermal disorder
journal, March 2011

  • Delaire, O.; Marty, K.; Stone, M. B.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 12
  • DOI: 10.1073/pnas.1014869108

Effects of temperature and pressure on phonons in FeSi 1 x Al x
journal, May 2013


Thermal expansion and crystal structure of FeSi between 4 and 1173 K determined by time-of-flight neutron powder diffraction
journal, March 2002

  • Vočadlo, L.; Knight, K. S.; Price, G. D.
  • Physics and Chemistry of Minerals, Vol. 29, Issue 2
  • DOI: 10.1007/s002690100202

Elastic, thermodynamic, and electronic properties of MnSi, FeSi, and CoSi
journal, October 2010

  • Petrova, Alla E.; Krasnorussky, Vladimir N.; Shikov, Anatoly A.
  • Physical Review B, Vol. 82, Issue 15
  • DOI: 10.1103/PhysRevB.82.155124

Phonon anharmonicity of iron monosilicide
journal, January 2015


Thermal expansion study of Fe1−xCoxSi
journal, April 1994


Thermodynamics of FeSi
journal, February 1995


Heavy-impurity resonance, hybridization, and phonon spectral functions in Fe 1 x M x Si   ( M = Ir ,   Os )
journal, March 2015


    Works referencing / citing this record:

    A practical field guide to thermoelectrics: Fundamentals, synthesis, and characterization
    journal, June 2018

    • Zevalkink, Alex; Smiadak, David M.; Blackburn, Jeff L.
    • Applied Physics Reviews, Vol. 5, Issue 2
    • DOI: 10.1063/1.5021094

    Phonon anharmonicity and negative thermal expansion in SnSe
    journal, August 2016