skip to main content


Title: Electromagnetic effects on dynamics of high-beta filamentary structures

The impacts of the electromagnetic effects on blob dynamics are considered. Electromagnetic BOUT++ simulations on seeded high-beta blobs demonstrate that inhomogeneity of magnetic curvature or plasma pressure along the filament leads to bending of the blob filaments and the magnetic field lines due to increased propagation time of plasma current (Alfvén time). The bending motion can enhance heat exchange between the plasma facing materials and the inner SOL region. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time. Using linear analysis and the BOUT++ simulation, it is found that electromagnetic effects in high temperature and high density plasmas reduce the growth rate of resistive drift wave turbulence when resistivity drops below some certain value. Lastly, in the course of blobs motion in the SOL its temperature is reduced, which leads to enhancement of resistive effects, so the blob can switch from electromagnetic to electrostatic regime, where resistive drift wave turbulence become important.
 [1] ;  [2] ;  [3] ;  [1]
  1. Univ. of California San Diego, La Jolla, CA (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Naval Research Lab. (NRL), Washington, DC (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 1070-664X; PHPAEN
Grant/Contract Number:
AC52-07NA27344; FG02-04ER54739; SC0010413; AC02-05CH11231
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 22; Journal Issue: 1; Journal ID: ISSN 1070-664X
American Institute of Physics (AIP)
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24); Kwanjeong Educational Foundation
Country of Publication:
United States
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Magnetic fields; Plasma blobs; Plasma temperature; Drift waves; Electrostatic waves
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1228483