skip to main content


Title: Effect of local stress fields on twin characteristics in HCP metals

Here we study the effect of nearest neighboring grains on the propensity for {1012} twin growth in Mg and Zr. Twin lamellae lying within one grain flanked by two neighboring grains with several orientations are considered. The fields of resolved shear stress on the twin system are calculated in the multicrystal using a three-dimensional full-field crystal plasticity Fast Fourier Transform approach. The calculations were carried out for Mg and Zr using slip threshold stresses corresponding to 300K and 76K, respectively, where twin activity is important. We show that the neighboring grain constraint tends to oppose further growth and that the critical applied stress needed to overcome this resistance depends on neighboring grain orientation, more strongly in Zr than in Mg. We also present results for a pair of adjacent and parallel twins at various spacings. It is found that their paired interaction increases the resistive forces for twin growth above that for an isolated twin. The critical spacing above which this enhanced resistance is removed is smaller for Zr than Mg. Our analysis reveals that these two disparate responses of Zr and Mg are both a consequence of the fact that Zr is elastically and plastically more anisotropic than Mg.more » Additional calculations carried out on Ti support this conclusion. Finally, these findings can help explain why, for the same grain size, more twins per grain form in Zr than in Mg, twins in Zr tend to be thinner than those in Mg, and the relationship between the thickness of the twin and its Schmid factor in Zr is not as strong as in Mg.« less
 [1] ;  [2] ;  [3]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Divisio
Publication Date:
Report Number(s):
Journal ID: ISSN 1359-6454
Grant/Contract Number:
AC52-06NA25396; FWP-06SCPE401
Accepted Manuscript
Journal Name:
Acta Materialia
Additional Journal Information:
Journal Volume: 116; Journal Issue: C; Journal ID: ISSN 1359-6454
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE Office of Science (SC). Basic Energy Sciences (BES) (SC-22); USDOE
Country of Publication:
United States
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1351012