DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermodynamic studies of studtite thermal decomposition pathways via amorphous intermediates UO3, U2O7, and UO4

Abstract

The thermal decomposition of studtite (UO2)O2(H2O)2·2H2O results in a series of intermediate X-ray amorphous materials with general composition UO3+x (x = 0, 0.5, 1). As an extension of a structural study on U2O7, this work provides detailed calorimetric data on these amorphous oxygen-rich materials since their energetics and thermal stability are unknown. These were characterized in situ by thermogravimetry, and mass spectrometry. Ex situ X-ray diffraction and infrared spectroscopy characterized their chemical bonding and local structures. This detailed characterization formed the basis for obtaining formation enthalpies by high temperature oxide melt solution calorimetry. The thermodynamic data demonstrate the metastability of the amorphous UO3+x materials, and explain their irreversible and spontaneous reactions to generate oxygen and form metaschoepite. Thus, formation of studtite in the nuclear fuel cycle, followed by heat treatment, can produce metastable amorphous UO3+x materials that pose the risk of significant O2 gas. Quantitative knowledge of the energy landscape of amorphous UO3+x was provided for stability analysis and assessment of conditions for decomposition.

Authors:
 [1];  [2];  [1];  [3];  [4]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Earth and Environmental Sciences Division
  2. Univ. of California, Davis, CA (United States). Peter A. Rock Thermochemistry Lab. and NEAT ORU; Washington State Univ., Pullman, WA (United States). Gene and Lina Voiland School of Chemical Engineering and Bioengineering
  3. Univ. of Notre Dame, IN (United States). Dept. of Civil and Environmental Engineering and Earth Sciences; Univ. of Notre Dame, IN (United States). Dept. of Chemistry and Biochemistry
  4. Univ. of California, Davis, CA (United States). Peter A. Rock Thermochemistry Lab. and NEAT ORU
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1304726
Alternate Identifier(s):
OSTI ID: 1325346
Report Number(s):
LA-UR-16-23089
Journal ID: ISSN 0022-3115
Grant/Contract Number:  
AC52-06NA25396; SC0001089; DESC0001089
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Nuclear Materials
Additional Journal Information:
Journal Volume: 478; Journal Issue: C; Journal ID: ISSN 0022-3115
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Guo, Xiaofeng, Wu, Di, Xu, Hongwu, Burns, Peter C., and Navrotsky, Alexandra. Thermodynamic studies of studtite thermal decomposition pathways via amorphous intermediates UO3, U2O7, and UO4. United States: N. p., 2016. Web. doi:10.1016/j.jnucmat.2016.06.014.
Guo, Xiaofeng, Wu, Di, Xu, Hongwu, Burns, Peter C., & Navrotsky, Alexandra. Thermodynamic studies of studtite thermal decomposition pathways via amorphous intermediates UO3, U2O7, and UO4. United States. https://doi.org/10.1016/j.jnucmat.2016.06.014
Guo, Xiaofeng, Wu, Di, Xu, Hongwu, Burns, Peter C., and Navrotsky, Alexandra. Thu . "Thermodynamic studies of studtite thermal decomposition pathways via amorphous intermediates UO3, U2O7, and UO4". United States. https://doi.org/10.1016/j.jnucmat.2016.06.014. https://www.osti.gov/servlets/purl/1304726.
@article{osti_1304726,
title = {Thermodynamic studies of studtite thermal decomposition pathways via amorphous intermediates UO3, U2O7, and UO4},
author = {Guo, Xiaofeng and Wu, Di and Xu, Hongwu and Burns, Peter C. and Navrotsky, Alexandra},
abstractNote = {The thermal decomposition of studtite (UO2)O2(H2O)2·2H2O results in a series of intermediate X-ray amorphous materials with general composition UO3+x (x = 0, 0.5, 1). As an extension of a structural study on U2O7, this work provides detailed calorimetric data on these amorphous oxygen-rich materials since their energetics and thermal stability are unknown. These were characterized in situ by thermogravimetry, and mass spectrometry. Ex situ X-ray diffraction and infrared spectroscopy characterized their chemical bonding and local structures. This detailed characterization formed the basis for obtaining formation enthalpies by high temperature oxide melt solution calorimetry. The thermodynamic data demonstrate the metastability of the amorphous UO3+x materials, and explain their irreversible and spontaneous reactions to generate oxygen and form metaschoepite. Thus, formation of studtite in the nuclear fuel cycle, followed by heat treatment, can produce metastable amorphous UO3+x materials that pose the risk of significant O2 gas. Quantitative knowledge of the energy landscape of amorphous UO3+x was provided for stability analysis and assessment of conditions for decomposition.},
doi = {10.1016/j.jnucmat.2016.06.014},
journal = {Journal of Nuclear Materials},
number = C,
volume = 478,
place = {United States},
year = {Thu Sep 01 00:00:00 EDT 2016},
month = {Thu Sep 01 00:00:00 EDT 2016}
}

Journal Article:

Citation Metrics:
Cited by: 33 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Alpha-radiolysis effects on UO2 alteration in water
journal, January 2001


Corrosion of commercial spent nuclear fuel. 1. Formation of studtite and metastudtite
journal, January 2005


Stability of Peroxide-Containing Uranyl Minerals
journal, November 2003


Formation of Studtite during the Oxidative Dissolution of UO 2 by Hydrogen Peroxide:  A SFM Study
journal, December 2004

  • Clarens, F.; de Pablo, J.; Díez-Pérez, I.
  • Environmental Science & Technology, Vol. 38, Issue 24
  • DOI: 10.1021/es0492891

Alteration of dehydrated schoepite and soddyite to studtite, [(UO2)(O2)(H2O)2](H2O)2
journal, December 2010

  • Forbes, T. Z.; Horan, P.; Devine, T.
  • American Mineralogist, Vol. 96, Issue 1
  • DOI: 10.2138/am.2011.3517

Nuclear Fuel in a Reactor Accident
journal, March 2012

  • Burns, Peter C.; Ewing, Rodney C.; Navrotsky, Alexandra
  • Science, Vol. 335, Issue 6073
  • DOI: 10.1126/science.1211285

Uranyl peroxide enhanced nuclear fuel corrosion in seawater
journal, January 2012

  • Armstrong, C. R.; Nyman, M.; Shvareva, T.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 6
  • DOI: 10.1073/pnas.1119758109

Energetics of metastudtite and implications for nuclear waste alteration
journal, November 2014

  • Guo, Xiaofeng; Ushakov, Sergey V.; Labs, Sabrina
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 50
  • DOI: 10.1073/pnas.1421144111

On the mechanical stability of uranyl peroxide hydrates: implications for nuclear fuel degradation
journal, January 2015

  • Weck, Philippe F.; Kim, Eunja; Buck, Edgar C.
  • RSC Advances, Vol. 5, Issue 96
  • DOI: 10.1039/C5RA16111H

Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U 2 O 7
journal, March 2016


The Thermal Decomposition of Uranium Peroxide, UO 4 .2H 2 O
journal, August 1957

  • Boggs, James E.; El-Chehabi, Munzir
  • Journal of the American Chemical Society, Vol. 79, Issue 16
  • DOI: 10.1021/ja01573a003

α-UO3: Its preparation and thermal stability
journal, December 1961


Pseudomorphic decomposition of uranium peroxide into UO3
journal, May 1963

  • Cordfunke, E. H. P.; Van Der Giessen, A. A.
  • Journal of Inorganic and Nuclear Chemistry, Vol. 25, Issue 5
  • DOI: 10.1016/0022-1902(63)80240-7

Thermal decomposition of hydrated uranium peroxides
journal, January 1963

  • Cordfunke, E. H. P.; Aling, P.
  • Recueil des Travaux Chimiques des Pays-Bas, Vol. 82, Issue 3
  • DOI: 10.1002/recl.19630820309

Thermal decomposition of uranium peroxide hydrates
journal, April 1976


Thermodynamics of formation of coffinite, USiO 4
journal, May 2015

  • Guo, Xiaofeng; Szenknect, Stéphanie; Mesbah, Adel
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 21
  • DOI: 10.1073/pnas.1507441112

Progress and new directions in high temperature calorimetry revisited
journal, April 1997


U( v ) in metal uranates: a combined experimental and theoretical study of MgUO 4 , CrUO 4 , and FeUO 4
journal, January 2016

  • Guo, Xiaofeng; Tiferet, Eitan; Qi, Liang
  • Dalton Transactions, Vol. 45, Issue 11
  • DOI: 10.1039/C6DT00066E

Structure and thermodynamics of uranium-containing iron garnets
journal, September 2016

  • Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.
  • Geochimica et Cosmochimica Acta, Vol. 189
  • DOI: 10.1016/j.gca.2016.05.043

Solubility measurements of the uranyl oxide hydrate phases metaschoepite, compreignacite, Na–compreignacite, becquerelite, and clarkeite
journal, June 2008

  • Gorman-Lewis, Drew; Fein, Jeremy B.; Burns, Peter C.
  • The Journal of Chemical Thermodynamics, Vol. 40, Issue 6
  • DOI: 10.1016/j.jct.2008.02.006

Works referencing / citing this record:

The s in Hydrothermal Systems
book, January 2019

  • Migdisov, Artaches (Artas); Xu, Hongwu; Williams‐Jones, Anthony E.
  • Encyclopedia of Water: Science, Technology, and Society
  • DOI: 10.1002/9781119300762.wsts0079

Uranyl–Peroxide Capsule Self‐Assembly in Slow Motion
journal, February 2019

  • Arteaga, Ana; Zhang, Lei; Hickam, Sarah
  • Chemistry – A European Journal, Vol. 25, Issue 24
  • DOI: 10.1002/chem.201806227

Thermal desulfurization of pyrite: An in situ high-T neutron diffraction and DTA–TGA study
journal, June 2019

  • Xu, Hongwu; Guo, Xiaofeng; Seaman, Lani A.
  • Journal of Materials Research, Vol. 34, Issue 19
  • DOI: 10.1557/jmr.2019.185

Sample seal-and-drop device and methodology for high temperature oxide melt solution calorimetric measurements of PuO 2
journal, April 2019

  • Guo, Xiaofeng; Boukhalfa, Hakim; Mitchell, Jeremy N.
  • Review of Scientific Instruments, Vol. 90, Issue 4
  • DOI: 10.1063/1.5093567

Energetics of hydration on uranium oxide and peroxide surfaces
journal, June 2019

  • Guo, Xiaofeng; Wu, Di; Ushakov, Sergey V.
  • Journal of Materials Research, Vol. 34, Issue 19
  • DOI: 10.1557/jmr.2019.192