skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ba-filled Ni–Sb–Sn based skutterudites with anomalously high lattice thermal conductivity

Abstract

Here, in this study, novel filled skutterudites BayNi4Sb12-xSnx (ymax = 0.93) have been prepared by arc melting followed by annealing at 250, 350 and 450°C up to 30 days in vacuum-sealed quartz vials. Extension of the homogeneity region, solidus temperatures and structural investigations were performed for the skutterudite phase in the ternary Ni–Sn–Sb and in the quaternary Ba–Ni–Sb–Sn systems. Phase equilibria in the Ni–Sn–Sb system at 450°C were established by means of Electron Probe Microanalysis (EPMA) and X-ray Powder Diffraction (XPD). With rather small cages Ni4(Sb,Sn)12, the Ba–Ni–Sn–Sb skutterudite system is perfectly suited to study the influence of filler atoms on the phonon thermal conductivity. Single-phase samples with the composition Ni4Sb8.2Sn3.8, Ba0.42Ni4Sb8.2Sn3.8 and Ba0.92Ni4Sb6.7Sn5.3 were used to measure their physical properties, i.e. temperature dependent electrical resistivity, Seebeck coefficient and thermal conductivity. The resistivity data demonstrate a crossover from metallic to semiconducting behaviour. The corresponding gap width was extracted from the maxima in the Seebeck coefficient data as a function of temperature. Single crystal X-ray structure analyses at 100, 200 and 300 K revealed the thermal expansion coefficients as well as Einstein and Debye temperatures for Ba0.73Ni4Sb8.1Sn3.9 and Ba0.95Ni4Sb6.1Sn5.9. These data were in accordance with the Debye temperatures obtained from themore » specific heat (4.4 K < T < 140 K) and Mössbauer spectroscopy (10 K < T < 290 K). Rather small atom displacement parameters for the Ba filler atoms indicate a severe reduction in the “rattling behaviour” consistent with the high levels of lattice thermal conductivity. The elastic moduli, collected from Resonant Ultrasonic Spectroscopy ranged from 100 GPa for Ni4Sb8.2Sn3.8 to 116 GPa for Ba0.92Ni4Sb6.7Sn5.3. The thermal expansion coefficients were 11.8 × 10-6 K-1 for Ni4Sb8.2Sn3.8 and 13.8 × 10-6 K-1 for Ba0.92Ni4Sb6.7Sn5.3. The room temperature Vickers hardness values vary within the range from 2.6 GPa to 4.7 GPa. Lastly, severe plastic deformation via high-pressure torsion was used to introduce nanostructuring; however, the physical properties before and after HPT showed no significant effect on the materials thermoelectric behaviour.« less

Authors:
 [1];  [2];  [3];  [4];  [4];  [4];  [1];  [5];  [6];  [1];  [4];  [7];  [8];  [1];  [1];  [9]
  1. Univ. of Vienna (Austria)
  2. Univ. of Vienna (Austria); Christian Doppler Laboratory for Thermoelectricity, Vienna (Austria); Technische Universitat Wien (Vienna University of Technology), Austria
  3. Univ. of Vienna (Austria); Christian Doppler Laboratory for Thermoelectricity, Vienna (Austria);Technische Universitat Wien (Vienna University of Technology), Austria
  4. Technische Universitat Wien (Vienna University of Technology), Austria
  5. Julich Research Centre (Germany). Julich Centre for Neutron Science (JCNS)
  6. Julich Research Centre (Germany). Julich Centre for Neutron Science (JCNS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  7. Masaryk University, Brno (Czech Republic)
  8. Christian Doppler Laboratory for Thermoelectricity, Vienna (Austria); Technische Universitat Wien (Vienna University of Technology), Austria
  9. Univ. of Vienna (Austria); Christian Doppler Laboratory for Thermoelectricity, Vienna (Austria)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1302928
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Dalton Transactions
Additional Journal Information:
Journal Volume: 45; Journal Issue: 27; Journal ID: ISSN 1477-9226
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Paschinger, W., Rogl, Gerda, Grytsiv, A., Michor, H., Heinrich, P. R., Mueller, H., Puchegger, S., Klobes, B., Hermann, Raphael P., Reinecker, M., Eisenmenger-Sitter, Ch., Broz, P., Bauer, Ernst, Giester, G., Zehetbauer, M., and Rogl, Peter F. Ba-filled Ni–Sb–Sn based skutterudites with anomalously high lattice thermal conductivity. United States: N. p., 2016. Web. https://doi.org/10.1039/C6DT01298A.
Paschinger, W., Rogl, Gerda, Grytsiv, A., Michor, H., Heinrich, P. R., Mueller, H., Puchegger, S., Klobes, B., Hermann, Raphael P., Reinecker, M., Eisenmenger-Sitter, Ch., Broz, P., Bauer, Ernst, Giester, G., Zehetbauer, M., & Rogl, Peter F. Ba-filled Ni–Sb–Sn based skutterudites with anomalously high lattice thermal conductivity. United States. https://doi.org/10.1039/C6DT01298A
Paschinger, W., Rogl, Gerda, Grytsiv, A., Michor, H., Heinrich, P. R., Mueller, H., Puchegger, S., Klobes, B., Hermann, Raphael P., Reinecker, M., Eisenmenger-Sitter, Ch., Broz, P., Bauer, Ernst, Giester, G., Zehetbauer, M., and Rogl, Peter F. Tue . "Ba-filled Ni–Sb–Sn based skutterudites with anomalously high lattice thermal conductivity". United States. https://doi.org/10.1039/C6DT01298A. https://www.osti.gov/servlets/purl/1302928.
@article{osti_1302928,
title = {Ba-filled Ni–Sb–Sn based skutterudites with anomalously high lattice thermal conductivity},
author = {Paschinger, W. and Rogl, Gerda and Grytsiv, A. and Michor, H. and Heinrich, P. R. and Mueller, H. and Puchegger, S. and Klobes, B. and Hermann, Raphael P. and Reinecker, M. and Eisenmenger-Sitter, Ch. and Broz, P. and Bauer, Ernst and Giester, G. and Zehetbauer, M. and Rogl, Peter F.},
abstractNote = {Here, in this study, novel filled skutterudites BayNi4Sb12-xSnx (ymax = 0.93) have been prepared by arc melting followed by annealing at 250, 350 and 450°C up to 30 days in vacuum-sealed quartz vials. Extension of the homogeneity region, solidus temperatures and structural investigations were performed for the skutterudite phase in the ternary Ni–Sn–Sb and in the quaternary Ba–Ni–Sb–Sn systems. Phase equilibria in the Ni–Sn–Sb system at 450°C were established by means of Electron Probe Microanalysis (EPMA) and X-ray Powder Diffraction (XPD). With rather small cages Ni4(Sb,Sn)12, the Ba–Ni–Sn–Sb skutterudite system is perfectly suited to study the influence of filler atoms on the phonon thermal conductivity. Single-phase samples with the composition Ni4Sb8.2Sn3.8, Ba0.42Ni4Sb8.2Sn3.8 and Ba0.92Ni4Sb6.7Sn5.3 were used to measure their physical properties, i.e. temperature dependent electrical resistivity, Seebeck coefficient and thermal conductivity. The resistivity data demonstrate a crossover from metallic to semiconducting behaviour. The corresponding gap width was extracted from the maxima in the Seebeck coefficient data as a function of temperature. Single crystal X-ray structure analyses at 100, 200 and 300 K revealed the thermal expansion coefficients as well as Einstein and Debye temperatures for Ba0.73Ni4Sb8.1Sn3.9 and Ba0.95Ni4Sb6.1Sn5.9. These data were in accordance with the Debye temperatures obtained from the specific heat (4.4 K < T < 140 K) and Mössbauer spectroscopy (10 K < T < 290 K). Rather small atom displacement parameters for the Ba filler atoms indicate a severe reduction in the “rattling behaviour” consistent with the high levels of lattice thermal conductivity. The elastic moduli, collected from Resonant Ultrasonic Spectroscopy ranged from 100 GPa for Ni4Sb8.2Sn3.8 to 116 GPa for Ba0.92Ni4Sb6.7Sn5.3. The thermal expansion coefficients were 11.8 × 10-6 K-1 for Ni4Sb8.2Sn3.8 and 13.8 × 10-6 K-1 for Ba0.92Ni4Sb6.7Sn5.3. The room temperature Vickers hardness values vary within the range from 2.6 GPa to 4.7 GPa. Lastly, severe plastic deformation via high-pressure torsion was used to introduce nanostructuring; however, the physical properties before and after HPT showed no significant effect on the materials thermoelectric behaviour.},
doi = {10.1039/C6DT01298A},
journal = {Dalton Transactions},
number = 27,
volume = 45,
place = {United States},
year = {2016},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

In-doped Pb0.5Sn0.5Te p-type samples prepared by powder metallurgical processing for thermoelectric applications
journal, June 2007

  • Gelbstein, Y.; Dashevsky, Z.; Dariel, M. P.
  • Physica B: Condensed Matter, Vol. 396, Issue 1-2, p. 16-21
  • DOI: 10.1016/j.physb.2007.02.067

Phase separation and antisite defects in the thermoelectric TiNiSn half-Heusler alloys
journal, July 2013


Thermoelectric properties of spark plasma sintered composites based on TiNiSn half-Heusler alloys
journal, June 2011

  • Gelbstein, Yaniv; Tal, Nadav; Yarmek, Aviad
  • Journal of Materials Research, Vol. 26, Issue 15
  • DOI: 10.1557/jmr.2011.107

Mechanical Alloying and Spark Plasma Sintering of Higher Manganese Silicides for Thermoelectric Applications
journal, February 2013

  • Sadia, Yatir; Dinnerman, Liron; Gelbstein, Yaniv
  • Journal of Electronic Materials, Vol. 42, Issue 7
  • DOI: 10.1007/s11664-013-2476-4

Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports
journal, May 2011

  • Shi, Xun; Yang, Jiong; Salvador, James R.
  • Journal of the American Chemical Society, Vol. 133, Issue 20
  • DOI: 10.1021/ja111199y

n-Type skutterudites (R,Ba,Yb)yCo4Sb12 (R=Sr, La, Mm, DD, SrMm, SrDD) approaching ZT≈2.0
journal, January 2014


A new generation of p-type didymium skutterudites with high ZT
journal, April 2011


Enhanced Thermoelectric Figure of Merit in P-Type DDy(Fe1-XCox)4Sb12
journal, April 2011


Rational Synthesis of Metastable Skutterudite Compounds Using Multilayer Precursors
journal, March 1997

  • Hornbostel, Marc D.; Hyer, Edward J.; Thiel, James
  • Journal of the American Chemical Society, Vol. 119, Issue 11
  • DOI: 10.1021/ja964084g

Thermoelectric properties of Sn-filled skutterudites
journal, July 2000

  • Nolas, G. S.; Takizawa, H.; Endo, T.
  • Applied Physics Letters, Vol. 77, Issue 1
  • DOI: 10.1063/1.126874

Atom insertion into the CoSb3 skutterudite host lattice under high pressure
journal, January 1999


Synthesis and Thermoelectric Properties of Tin-Filled Skutterudite, SnxCo4Sb12.
journal, January 2000

  • Takizawa, Hirotsugu; Ito, Masayuki; Uheda, Kyota
  • Journal of the Ceramic Society of Japan, Vol. 108, Issue 1258
  • DOI: 10.2109/jcersj.108.1258_530

Phase Equilibria in the Sn-Rich Corner of the Ni-Sb-Sn System
journal, January 2013

  • Mishra, Ratikanta; Kroupa, Ales; Zemanova, Adela
  • Journal of Electronic Materials, Vol. 42, Issue 4
  • DOI: 10.1007/s11664-012-2395-9

Thermoelectric properties of novel skutterudites with didymium: DDy(Fe1−xCox)4Sb12 and DDy(Fe1−xNix)4Sb12
journal, January 2010


Thermal expansion of skutterudites
journal, February 2010

  • Rogl, G.; Zhang, L.; Rogl, P.
  • Journal of Applied Physics, Vol. 107, Issue 4
  • DOI: 10.1063/1.3284088

Mechanical Properties of Skutterudites
journal, August 2011


New p- and n-type skutterudites with ZT>1 and nearly identical thermal expansion and mechanical properties
journal, June 2013


Thermoelectric properties of Fe0.2Co3.8Sb12−xTex skutterudites
journal, October 2013


Electronic structure and bonding in skutterudite-type phosphides
journal, April 1996


Crystal Structure and Properties of Some Filled and Unfilled Skutterudites: GdFe4P12, SmFe4P12, NdFe4As12, Eu0.54Co4Sb12, Fe0.5Ni0.5P3, CoP3, and NiP3
journal, May 2000


Zintl Chemistry for Designing High Efficiency Thermoelectric Materials
journal, February 2010

  • Toberer, Eric S.; May, Andrew F.; Snyder, G. Jeffrey
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm901956r

Co-Sb (Cobalt-Antimony)
journal, April 1991


Physical properties of skutterudites , M = Fe, Co, Rh, Ir
journal, March 2000

  • Bauer, E.; Galatanu, A.; Michor, H.
  • The European Physical Journal B, Vol. 14, Issue 3
  • DOI: 10.1007/s100510051057

A miniature capacitance dilatometer for thermal expansion and magnetostriction
journal, July 1998

  • Rotter, M.; Müller, H.; Gratz, E.
  • Review of Scientific Instruments, Vol. 69, Issue 7
  • DOI: 10.1063/1.1149009

Two capacitance dilatometers
journal, May 1973


A tilted‐plate capacitance displacement sensor
journal, September 1990

  • Genossar, Jan; Steinitz, Michael
  • Review of Scientific Instruments, Vol. 61, Issue 9
  • DOI: 10.1063/1.1141342

Confinement effects on glass forming liquids probed by dynamic mechanical analysis
journal, August 2008


Dynamic mechanical analysis—a powerful tool for the study of phase transitions
journal, December 1997


Heat-Diffusion Central Peak in the Elastic Susceptibility of KSCN
journal, November 1994


Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids
journal, January 1993


MmFe4Sb12- and CoSb3-based nano-skutterudites prepared by ball milling: Kinetics of formation and transport properties
journal, July 2009


A new investigation of the system Ni–Sn
journal, July 2007


STRUCTURE TIDY – a computer program to standardize crystal structure data
journal, April 1987


Preparation and structural investigations of antimonides with the LaFe4P12 structure
journal, July 1980


Lithium insertion mechanism in CoSb 3 analysed by 121 Sb Mössbauer spectrometry, X-ray absorption spectroscopy and electronic structure calculations
journal, January 2004

  • Devos, Isabelle; Womes, Manfred; Heilemann, Mike
  • J. Mater. Chem., Vol. 14, Issue 11
  • DOI: 10.1039/B312618H

Bonding in skutterudites: Combined experimental and theoretical characterization of CoSb 3
journal, March 2001


Heat-capacity analysis of a large number of A 15 -type compounds
journal, February 1983


Deviations from linear temperature dependence of the electrical resistivity of V-Cr and Ta-W alloys
journal, February 1976


Estimation of the thermal band gap of a semiconductor from seebeck measurements
journal, July 1999


The second order electrical effects in metals
journal, July 1937

  • Wilson, A. H.
  • Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 33, Issue 3
  • DOI: 10.1017/S0305004100019757

Effect of Point Imperfections on Lattice Thermal Conductivity
journal, November 1960


Model for Lattice Thermal Conductivity at Low Temperatures
journal, February 1959


Low-Temperature Lattice Thermal Conductivity
journal, May 1961


Heat flow and lattice vibrations in glasses
journal, June 1989


Low-temperature thermal conductivity of a single-grain Y-Mg-Zn icosahedral quasicrystal
journal, July 2000

  • Giannò, K.; Sologubenko, A. V.; Chernikov, M. A.
  • Physical Review B, Vol. 62, Issue 1
  • DOI: 10.1103/PhysRevB.62.292

Avoided crossing of rattler modes in thermoelectric materials
journal, August 2008

  • Christensen, Mogens; Abrahamsen, Asger B.; Christensen, Niels B.
  • Nature Materials, Vol. 7, Issue 10
  • DOI: 10.1038/nmat2273

Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites
journal, August 2008

  • Koza, Michael Marek; Johnson, Mark Robert; Viennois, Romain
  • Nature Materials, Vol. 7, Issue 10
  • DOI: 10.1038/nmat2260

High-pressure torsion, a new processing route for thermoelectrics of high ZTs by means of severe plastic deformation
journal, March 2012


Effect of HPT processing on the structure, thermoelectric and mechanical properties of Sr0.07Ba0.07Yb0.07Co4Sb12
journal, October 2012


Use of quantum‐well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials
journal, December 1993

  • Hicks, L. D.; Harman, T. C.; Dresselhaus, M. S.
  • Applied Physics Letters, Vol. 63, Issue 23
  • DOI: 10.1063/1.110207

Impact of high pressure torsion on the microstructure and physical properties of Pr0.67Fe3CoSb12, Pr0.71Fe3.5Ni0.5Sb12, and Ba0.06Co4Sb12
journal, April 2010


A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

Stage IV work hardening in cell forming materials, part II: A new mechanism
journal, December 1996


Cold work hardening in stages IV and V of F.C.C. metals—I. Experiments and interpretation
journal, February 1993


The Role of Hydrostatic Pressure in Severe Plastic Deformation
journal, May 2003

  • Zehetbauer, M. J.; Stüwe, H. P.; Vorhauer, A.
  • Advanced Engineering Materials, Vol. 5, Issue 5
  • DOI: 10.1002/adem.200310090

Deformation Induced Vacancies with Severe Plastic Deformation: Measurements and Modelling
journal, January 2006


Thermal Expansion Study of Ordered and Disordered F e 3 Al: An Effective Approach for the Determination of Vibrational Entropy
journal, March 1996


A simplified method for calculating the debye temperature from elastic constants
journal, July 1963


Colloquium : Saturation of electrical resistivity
journal, October 2003


Quenching rattling modes in skutterudites with pressure
journal, June 2015


    Works referencing / citing this record:

    Enhanced figure of merit in nanostructured (Bi,Sb)2Te3 with optimized composition, prepared by a straightforward arc-melting procedure
    journal, July 2017


    Low thermal conductivity in La-filled cobalt antimonide skutterudites with an inhomogeneous filling factor prepared under high-pressure conditions
    journal, January 2018

    • Serrano-Sánchez, F.; Prado-Gonjal, J.; Nemes, N. M.
    • Journal of Materials Chemistry A, Vol. 6, Issue 1
    • DOI: 10.1039/c7ta08545a

    Structural evolution of a Ge-substituted SnSe thermoelectric material with low thermal conductivity
    journal, February 2018

    • Serrano-Sánchez, Federico; Nemes, Norbert M.; Martínez, José Luis
    • Journal of Applied Crystallography, Vol. 51, Issue 2
    • DOI: 10.1107/s1600576718000808