skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cooling the motion of diamond nanocrystals in a magneto-gravitational trap in high vacuum

Abstract

Levitated diamond nanocrystals with nitrogen-vacancy (NV) centres in high vacuum have been proposed as a unique system for experiments in fundamental quantum mechanics, including the generation of large quantum superposition states and tests of quantum gravity. This system promises extreme isolation from its environment while providing quantum control and sensing through the NV centre spin. While optical trapping has been the most explored method of levitation, recent results indicate that excessive optical heating of the nanodiamonds under vacuum may make the method impractical with currently available materials. Here, we study an alternative magneto-gravitational trap for diamagnetic particles, such as diamond nanocrystals, with stable levitation from atmospheric pressure to high vacuum. Magnetic field gradients from permanent magnets confine the particle in two dimensions, while confinement in the third dimension is gravitational. Furthermore, we demonstrate that feedback cooling of the centre-of-mass motion of a trapped nanodiamond cluster results in cooling of one degree of freedom to less than 1 K.

Authors:
 [1];  [1];  [1];  [1]
  1. Univ. of Pittsburgh, Pittsburgh, PA (United States). Dept. of Physics and Astronomy
Publication Date:
Research Org.:
Univ. of Pittsburgh, Pittsburgh, PA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1299202
Grant/Contract Number:  
SC0006638
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; diamagnetic levitation; nanodiamond; particle

Citation Formats

Hsu, Jen -Feng, Ji, Peng, Lewandowski, Charles W., and D’Urso, Brian. Cooling the motion of diamond nanocrystals in a magneto-gravitational trap in high vacuum. United States: N. p., 2016. Web. doi:10.1038/srep30125.
Hsu, Jen -Feng, Ji, Peng, Lewandowski, Charles W., & D’Urso, Brian. Cooling the motion of diamond nanocrystals in a magneto-gravitational trap in high vacuum. United States. doi:10.1038/srep30125.
Hsu, Jen -Feng, Ji, Peng, Lewandowski, Charles W., and D’Urso, Brian. Fri . "Cooling the motion of diamond nanocrystals in a magneto-gravitational trap in high vacuum". United States. doi:10.1038/srep30125. https://www.osti.gov/servlets/purl/1299202.
@article{osti_1299202,
title = {Cooling the motion of diamond nanocrystals in a magneto-gravitational trap in high vacuum},
author = {Hsu, Jen -Feng and Ji, Peng and Lewandowski, Charles W. and D’Urso, Brian},
abstractNote = {Levitated diamond nanocrystals with nitrogen-vacancy (NV) centres in high vacuum have been proposed as a unique system for experiments in fundamental quantum mechanics, including the generation of large quantum superposition states and tests of quantum gravity. This system promises extreme isolation from its environment while providing quantum control and sensing through the NV centre spin. While optical trapping has been the most explored method of levitation, recent results indicate that excessive optical heating of the nanodiamonds under vacuum may make the method impractical with currently available materials. Here, we study an alternative magneto-gravitational trap for diamagnetic particles, such as diamond nanocrystals, with stable levitation from atmospheric pressure to high vacuum. Magnetic field gradients from permanent magnets confine the particle in two dimensions, while confinement in the third dimension is gravitational. Furthermore, we demonstrate that feedback cooling of the centre-of-mass motion of a trapped nanodiamond cluster results in cooling of one degree of freedom to less than 1 K.},
doi = {10.1038/srep30125},
journal = {Scientific Reports},
number = ,
volume = 6,
place = {United States},
year = {2016},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Cavity opto-mechanics using an optically levitated nanosphere
journal, December 2009

  • Chang, D. E.; Regal, C. A.; Papp, S. B.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 3
  • DOI: 10.1073/pnas.0912969107

Millikelvin cooling of an optically trapped microsphere in vacuum
journal, March 2011

  • Li, Tongcang; Kheifets, Simon; Raizen, Mark G.
  • Nature Physics, Vol. 7, Issue 7
  • DOI: 10.1038/nphys1952

Cavity cooling of an optically levitated submicron particle
journal, August 2013

  • Kiesel, N.; Blaser, F.; Delic, U.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 35
  • DOI: 10.1073/pnas.1309167110

The nitrogen-vacancy colour centre in diamond
journal, July 2013


Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds
journal, August 2012

  • Horowitz, V. R.; Aleman, B. J.; Christle, D. J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 34
  • DOI: 10.1073/pnas.1211311109

Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling
journal, September 2013


Matter-Wave Interferometry of a Levitated Thermal Nano-Oscillator Induced and Probed by a Spin
journal, October 2013


A ``Schrodinger Cat'' Superposition State of an Atom
journal, May 1996


Bose condensation of cavity polaritons beyond the linear regime: The thermal equilibrium of a model microcavity
journal, November 2001


Josephson Effect for Photons in Two Weakly Linked Microcavities
journal, January 2009


A classical channel model for gravitational decoherence
journal, June 2014


Testing quantum gravity by nanodiamond interferometry with nitrogen-vacancy centers
journal, September 2014


Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond
journal, January 2013

  • Neukirch, Levi P.; Gieseler, Jan; Quidant, Romain
  • Optics Letters, Vol. 38, Issue 16
  • DOI: 10.1364/OL.38.002976

Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond
journal, September 2015

  • Neukirch, Levi P.; von Haartman, Eva; Rosenholm, Jessica M.
  • Nature Photonics, Vol. 9, Issue 10
  • DOI: 10.1038/nphoton.2015.162

Electron Spin Control of an Optically Levitated Nanodiamond in Vacuum
conference, January 2016

  • Li, Tongcang; Hoang, Thai M.; Ahn, Jonghoon
  • CLEO: QELS_Fundamental Science, Conference on Lasers and Electro-Optics
  • DOI: 10.1364/CLEO_QELS.2016.FTu3D.7

Burning and graphitization of optically levitated nanodiamonds in vacuum
journal, February 2016

  • Rahman, A. T. M. A.; Frangeskou, A. C.; Kim, M. S.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep21633

Diamagnetic levitation: Flying frogs and floating magnets (invited)
journal, May 2000

  • Simon, M. D.; Geim, A. K.
  • Journal of Applied Physics, Vol. 87, Issue 9
  • DOI: 10.1063/1.372654

On-chip manipulation of levitated femtodroplets
journal, September 2004

  • Lyuksyutov, I. F.; Naugle, D. G.; Rathnayaka, K. D. D.
  • Applied Physics Letters, Vol. 85, Issue 10
  • DOI: 10.1063/1.1781735

Diamagnetic Levitation of Solids at Microscale
journal, November 2008


Shape oscillations of an electrically charged diamagnetically levitated droplet
journal, March 2012

  • Hill, R. J. A.; Eaves, L.
  • Applied Physics Letters, Vol. 100, Issue 11
  • DOI: 10.1063/1.3694055

A parallel dipole line system
journal, February 2015

  • Gunawan, Oki; Virgus, Yudistira; Tai, Kong Fai
  • Applied Physics Letters, Vol. 106, Issue 6
  • DOI: 10.1063/1.4907931

Quantum Magnetomechanics with Levitating Superconducting Microspheres
journal, October 2012


Quantum Magnetomechanics: Ultrahigh- Q -Levitated Mechanical Oscillators
journal, October 2012


The Design and Application of a Reliable Ultrasonic Atomizer
journal, October 1967


Quenching nitrogen–vacancy center photoluminescence with an infrared pulsed laser
journal, March 2013


Methods of Digital Video Microscopy for Colloidal Studies
journal, April 1996

  • Crocker, John C.; Grier, David G.
  • Journal of Colloid and Interface Science, Vol. 179, Issue 1
  • DOI: 10.1006/jcis.1996.0217

Harmonic oscillator in heat bath: Exact simulation of time-lapse-recorded data and exact analytical benchmark statistics
journal, April 2011


On the Resistance Experienced by Spheres in their Motion through Gases
journal, June 1924


Motion of a spherical particle in a rarefied gas. Part 2. Drag and thermal polarization
journal, October 1990

  • Beresnev, S. A.; Chernyak, V. G.; Fomyagin, G. A.
  • Journal of Fluid Mechanics, Vol. 219, Issue -1
  • DOI: 10.1017/S0022112090003007

Subkelvin Parametric Feedback Cooling of a Laser-Trapped Nanoparticle
journal, September 2012


The reduction in the brownian motion of electrometers
journal, January 1953


Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes
journal, March 2008


Full mechanical characterization of a cold damped mirror
journal, December 2000


Quantum limits of cold damping with optomechanical coupling
journal, December 2001

  • Courty, J. -M.; Heidmann, A.; Pinard, M.
  • The European Physical Journal D, Vol. 17, Issue 3
  • DOI: 10.1007/s100530170014

Quantum model of cooling and force sensing with an optically trapped nanoparticle
journal, January 2016


    Works referencing / citing this record:

    Strong coupling between a single nitrogen-vacancy spin and the rotational mode of diamonds levitating in an ion trap
    journal, December 2017