skip to main content


Title: Imprinting high-gradient topographical structures onto optical surfaces using magnetorheological finishing: Manufacturing corrective optical elements for high-power laser applications

Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry, is discussed. The results of MRF imprinting a 23 μm deep structure containing gradients over 1.6 μm / mm onto a fused-silica window are presented as an example of the technique’s capabilities. As a result, this high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory.
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 0003-6935; APOPAI
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Applied Optics
Additional Journal Information:
Journal Volume: 55; Journal Issue: 19; Journal ID: ISSN 0003-6935
Optical Society of America (OSA)
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
Country of Publication:
United States
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 42 ENGINEERING; lasers and laser optics; laser beam shaping; optical design and fabrication; aberration compensation; aberrations; optical fabrication; testing; polishing; dispersion compensation devices
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1259200