skip to main content


Title: An atomistically informed mesoscale model for growth and coarsening during discharge in lithium-oxygen batteries

An atomistically informed mesoscale model is developed for the deposition of a discharge product in a Li-O 2 battery. This mescocale model includes particle growth and coarsening as well as a simplified nucleation model. The model involves LiO 2 formation through reaction of O 2 - and Li + in the electrolyte, which deposits on the cathode surface when the LiO 2 concentration reaches supersaturation in the electrolyte. A reaction-diffusion (rate-equation) model is used to describe the processes occurring in the electrolyte and a phase-field model is used to capture microstructural evolution. This model predicts that coarsening, in which large particles grow and small ones disappear, has a substantial effect on the size distribution of the LiO 2 particles during the discharge process. The size evolution during discharge is the result of the interplay between this coarsening process and particle growth. The growth through continued deposition of LiO 2 has the effect of causing large particles to grow ever faster while delaying the dissolution of small particles. The predicted size evolution is consistent with experimental results for a previously reported cathode material based on activated carbon during discharge and when it is at rest, although kinetic factors need to bemore » included. Finally, the approach described in this paper synergistically combines models on different length scales with experimental observations and should have applications in studying other related discharge processes, such as Li 2O 2 deposition, in Li-O 2 batteries and nucleation and growth in Li-S batteries.« less
ORCiD logo [1] ;  [1] ; ORCiD logo [1] ;  [2] ;  [3] ;  [1] ;  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 143; Journal Issue: 22; Journal ID: ISSN 0021-9606
American Institute of Physics (AIP)
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; Electrolytes; Cathodes; Coarsening; Nucleation; Solubility
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1228788