DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermodynamics and kinetics of gas storage in porous liquids

Abstract

The recent synthesis of organic molecular liquids with permanent porosity (Giri et al., Nature, 2015, 527, 216) opens up exciting new avenues for gas capture, storage, and separation. Using molecular dynamics simulations, we study the thermodynamics and kinetics for the storage of CH4, CO2, and N2 molecules in porous liquids consisting of crown-ether substituted cage molecules in a 15-crown-5 solvent. It is found that the gas storage capacity per cage molecule follows the order of CH4 > CO2 > N2, which does not correlate simply with the size of gas molecules. Different gas molecules are stored inside the cage differently, e.g., CO2 molecules prefer the cage s core while CH4 molecules favor both the core and the branch regions. All gas molecules considered can enter the cage essentially without energy barriers, and their dynamics inside the cage are only slightly hindered by the nanoscale confinement. In addition, all gas molecules can leave the cage on nanosecond time scale by overcoming a modest energy penalty. The molecular mechanisms of these observations are clarified.

Authors:
 [1];  [1];  [2];  [2];  [1]
  1. Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS); Energy Frontier Research Centers (EFRC) (United States). Center for Understanding and Control of Acid Gas-induced Evolution of Materials for Energy (UNCAGE-ME)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1287030
Grant/Contract Number:  
AC05-00OR22725; SC0012577
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry
Additional Journal Information:
Journal Volume: 120; Journal Issue: 29; Journal ID: ISSN 1520-6106
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Zhang, Fei, Yang, Fengchang, Huang, Jingsong, Sumpter, Bobby G., and Qiao, Rui. Thermodynamics and kinetics of gas storage in porous liquids. United States: N. p., 2016. Web. doi:10.1021/acs.jpcb.6b04784.
Zhang, Fei, Yang, Fengchang, Huang, Jingsong, Sumpter, Bobby G., & Qiao, Rui. Thermodynamics and kinetics of gas storage in porous liquids. United States. https://doi.org/10.1021/acs.jpcb.6b04784
Zhang, Fei, Yang, Fengchang, Huang, Jingsong, Sumpter, Bobby G., and Qiao, Rui. Tue . "Thermodynamics and kinetics of gas storage in porous liquids". United States. https://doi.org/10.1021/acs.jpcb.6b04784. https://www.osti.gov/servlets/purl/1287030.
@article{osti_1287030,
title = {Thermodynamics and kinetics of gas storage in porous liquids},
author = {Zhang, Fei and Yang, Fengchang and Huang, Jingsong and Sumpter, Bobby G. and Qiao, Rui},
abstractNote = {The recent synthesis of organic molecular liquids with permanent porosity (Giri et al., Nature, 2015, 527, 216) opens up exciting new avenues for gas capture, storage, and separation. Using molecular dynamics simulations, we study the thermodynamics and kinetics for the storage of CH4, CO2, and N2 molecules in porous liquids consisting of crown-ether substituted cage molecules in a 15-crown-5 solvent. It is found that the gas storage capacity per cage molecule follows the order of CH4 > CO2 > N2, which does not correlate simply with the size of gas molecules. Different gas molecules are stored inside the cage differently, e.g., CO2 molecules prefer the cage s core while CH4 molecules favor both the core and the branch regions. All gas molecules considered can enter the cage essentially without energy barriers, and their dynamics inside the cage are only slightly hindered by the nanoscale confinement. In addition, all gas molecules can leave the cage on nanosecond time scale by overcoming a modest energy penalty. The molecular mechanisms of these observations are clarified.},
doi = {10.1021/acs.jpcb.6b04784},
journal = {Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry},
number = 29,
volume = 120,
place = {United States},
year = {2016},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Porous organic cages
journal, October 2009

  • Tozawa, Tomokazu; Jones, James T. A.; Swamy, Shashikala I.
  • Nature Materials, Vol. 8, Issue 12, p. 973-978
  • DOI: 10.1038/nmat2545

Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model
journal, August 1995

  • Harris, Jonathan G.; Yung, Kwong H.
  • The Journal of Physical Chemistry, Vol. 99, Issue 31
  • DOI: 10.1021/j100031a034

Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids
journal, January 1996

  • Jorgensen, William L.; Maxwell, David S.; Tirado-Rives, Julian
  • Journal of the American Chemical Society, Vol. 118, Issue 45
  • DOI: 10.1021/ja9621760

LINCS: A linear constraint solver for molecular simulations
journal, September 1997


GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation
journal, February 2008

  • Hess, Berk; Kutzner, Carsten; van der Spoel, David
  • Journal of Chemical Theory and Computation, Vol. 4, Issue 3
  • DOI: 10.1021/ct700301q

Solution-Processable Molecular Cage Micropores for Hierarchically Porous Materials
journal, August 2012

  • Hasell, Tom; Zhang, Haifei; Cooper, Andrew I.
  • Advanced Materials, Vol. 24, Issue 42
  • DOI: 10.1002/adma.201202000

Porous Organic Cage Compounds as Highly Potent Affinity Materials for Sensing by Quartz Crystal Microbalances
journal, September 2012

  • Brutschy, Malte; Schneider, Markus W.; Mastalerz, Michael
  • Advanced Materials, Vol. 24, Issue 45
  • DOI: 10.1002/adma.201202786

Materials for electrochemical capacitors
journal, November 2008

  • Simon, Patrice; Gogotsi, Yury
  • Nature Materials, Vol. 7, Issue 11
  • DOI: 10.1038/nmat2297

Alkylated organic cages: from porous crystals to neat liquids
journal, January 2012

  • Giri, Nicola; Davidson, Christine E.; Melaugh, Gavin
  • Chemical Science, Vol. 3, Issue 6
  • DOI: 10.1039/c2sc01007k

Introduction to Metal–Organic Frameworks
journal, September 2011

  • Zhou, Hong-Cai; Long, Jeffrey R.; Yaghi, Omar M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 673-674
  • DOI: 10.1021/cr300014x

Liquids with permanent porosity
journal, November 2015

  • Giri, Nicola; Del Pópolo, Mario G.; Melaugh, Gavin
  • Nature, Vol. 527, Issue 7577
  • DOI: 10.1038/nature16072

Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen
journal, July 2001

  • Potoff, Jeffrey J.; Siepmann, J. Ilja
  • AIChE Journal, Vol. 47, Issue 7, p. 1676-1682
  • DOI: 10.1002/aic.690470719

PACKMOL: A package for building initial configurations for molecular dynamics simulations
journal, October 2009

  • Martínez, L.; Andrade, R.; Birgin, E. G.
  • Journal of Computational Chemistry, Vol. 30, Issue 13
  • DOI: 10.1002/jcc.21224

Liquefied molecular holes
journal, November 2015


Design and synthesis of an exceptionally stable and highly porous metal-organic framework
journal, November 1999

  • Li, Hailian; Eddaoudi, Mohamed; M., O'Keeffe
  • Nature, Vol. 402, Issue 6759, p. 276-279
  • DOI: 10.1038/46248

Porous Liquids
journal, April 2007

  • O'Reilly, Niamh; Giri, Nicola; James, Stuart L.
  • Chemistry - A European Journal, Vol. 13, Issue 11
  • DOI: 10.1002/chem.200700090

Works referencing / citing this record:

Electrostatic-Assisted Liquefaction of Porous Carbons
journal, October 2017

  • Li, Peipei; Schott, Jennifer A.; Zhang, Jinshui
  • Angewandte Chemie, Vol. 129, Issue 47
  • DOI: 10.1002/ange.201708843

Transforming Porous Organic Cages into Porous Ionic Liquids via a Supramolecular Complexation Strategy
journal, December 2019

  • Jie, Kecheng; Onishi, Nicole; Schott, Jennifer A.
  • Angewandte Chemie, Vol. 132, Issue 6
  • DOI: 10.1002/ange.201912068

Coordination cages as permanently porous ionic liquids
journal, February 2020


Electrostatic-Assisted Liquefaction of Porous Carbons
journal, October 2017

  • Li, Peipei; Schott, Jennifer A.; Zhang, Jinshui
  • Angewandte Chemie International Edition, Vol. 56, Issue 47
  • DOI: 10.1002/anie.201708843

A polyether amine modified metal organic framework enhanced the CO 2 adsorption capacity of room temperature porous liquids
journal, January 2019

  • Zhao, Xuemei; Yuan, Yihui; Li, Peipei
  • Chemical Communications, Vol. 55, Issue 87
  • DOI: 10.1039/c9cc07243h

Understanding gas capacity, guest selectivity, and diffusion in porous liquids
journal, January 2017

  • Greenaway, Rebecca L.; Holden, Daniel; Eden, Edward G. B.
  • Chemical Science, Vol. 8, Issue 4
  • DOI: 10.1039/c6sc05196k

Transforming Porous Organic Cages into Porous Ionic Liquids via a Supramolecular Complexation Strategy
journal, February 2020

  • Jie, Kecheng; Onishi, Nicole; Schott, Jennifer A.
  • Angewandte Chemie International Edition, Vol. 59, Issue 6
  • DOI: 10.1002/anie.201912068

Application of computational methods to the design and characterisation of porous molecular materials
journal, January 2017

  • Evans, Jack D.; Jelfs, Kim E.; Day, Graeme M.
  • Chemical Society Reviews, Vol. 46, Issue 11
  • DOI: 10.1039/c7cs00084g

Porous liquid zeolites: hydrogen bonding-stabilized H-ZSM-5 in branched ionic liquids
journal, January 2019

  • Li, Peipei; Chen, Hao; Schott, Jennifer A.
  • Nanoscale, Vol. 11, Issue 4
  • DOI: 10.1039/c8nr07337f

Coordination cages as permanently porous ionic liquids.
text, January 2020

  • Ma, Lillian; Haynes, Cally JE; Grommet, Angela B.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.49323