DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: AlF 3 Surface-Coated Li[Li 0.2 Ni 0.17 Co 0.07 Mn 0.56 ]O 2 Nanoparticles with Superior Electrochemical Performance for Lithium-Ion Batteries

Abstract

For Li-rich layered cathode materials considerable attention has been paid owing to their high capacity performance for Li-ion batteries (LIBs). In our work, layered Li-rich Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles are surface-modified with AlF3 through a facile chemical deposition method. The AlF3 surface layers have little impact on the structure of the material and act as buffers to prevent the direct contact of the electrode with the electrolyte; thus, they enhance the electrochemical performance significantly. The 3 wt% AlF3-coated Li-rich electrode exhibits the best cycling capability and has a considerably enhanced capacity retention of 83.1% after 50 cycles. Moreover, the rate performance and thermal stability of the 3 wt% AlF3-coated electrode are also clearly improved. Finally, surface analysis indicates that the AlF3 coating layer can largely suppress the undesirable growth of solid electrolyte interphase (SEI) film and, therefore, stabilizes the structure upon cycling.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [2];  [3]
  1. Henan Univ., Kaifeng (China)
  2. Henan Univ., Kaifeng (China); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. McGill Univ., Montreal, QC (Canada)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1287012
Grant/Contract Number:  
AC05-00OR22725; 50902044; 2015AA034201; 2012IRTSTHN004; 124200510004
Resource Type:
Accepted Manuscript
Journal Name:
ChemSusChem
Additional Journal Information:
Journal Volume: 8; Journal Issue: 15; Journal ID: ISSN 1864-5631
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; batteries; fluorides; nanoparticles; sol-gel processes; surface analysis; SOLID-SOLUTION CATHODES; SECONDARY BATTERIES; COMPOSITE CATHODE; CYCLING STABILITY; LICOO2 CATHODE; HIGH-CAPACITY; LI; ELECTRODES; IMPROVEMENT; OXIDE

Citation Formats

Sun, Shuwei, Yin, Yanfeng, Wan, Ning, Wu, Qing, Zhang, Xiaoping, Pan, Du, Bai, Ying, and Lu, Xia. AlF 3 Surface-Coated Li[Li 0.2 Ni 0.17 Co 0.07 Mn 0.56 ]O 2 Nanoparticles with Superior Electrochemical Performance for Lithium-Ion Batteries. United States: N. p., 2015. Web. doi:10.1002/cssc.201500143.
Sun, Shuwei, Yin, Yanfeng, Wan, Ning, Wu, Qing, Zhang, Xiaoping, Pan, Du, Bai, Ying, & Lu, Xia. AlF 3 Surface-Coated Li[Li 0.2 Ni 0.17 Co 0.07 Mn 0.56 ]O 2 Nanoparticles with Superior Electrochemical Performance for Lithium-Ion Batteries. United States. https://doi.org/10.1002/cssc.201500143
Sun, Shuwei, Yin, Yanfeng, Wan, Ning, Wu, Qing, Zhang, Xiaoping, Pan, Du, Bai, Ying, and Lu, Xia. Wed . "AlF 3 Surface-Coated Li[Li 0.2 Ni 0.17 Co 0.07 Mn 0.56 ]O 2 Nanoparticles with Superior Electrochemical Performance for Lithium-Ion Batteries". United States. https://doi.org/10.1002/cssc.201500143. https://www.osti.gov/servlets/purl/1287012.
@article{osti_1287012,
title = {AlF 3 Surface-Coated Li[Li 0.2 Ni 0.17 Co 0.07 Mn 0.56 ]O 2 Nanoparticles with Superior Electrochemical Performance for Lithium-Ion Batteries},
author = {Sun, Shuwei and Yin, Yanfeng and Wan, Ning and Wu, Qing and Zhang, Xiaoping and Pan, Du and Bai, Ying and Lu, Xia},
abstractNote = {For Li-rich layered cathode materials considerable attention has been paid owing to their high capacity performance for Li-ion batteries (LIBs). In our work, layered Li-rich Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles are surface-modified with AlF3 through a facile chemical deposition method. The AlF3 surface layers have little impact on the structure of the material and act as buffers to prevent the direct contact of the electrode with the electrolyte; thus, they enhance the electrochemical performance significantly. The 3 wt% AlF3-coated Li-rich electrode exhibits the best cycling capability and has a considerably enhanced capacity retention of 83.1% after 50 cycles. Moreover, the rate performance and thermal stability of the 3 wt% AlF3-coated electrode are also clearly improved. Finally, surface analysis indicates that the AlF3 coating layer can largely suppress the undesirable growth of solid electrolyte interphase (SEI) film and, therefore, stabilizes the structure upon cycling.},
doi = {10.1002/cssc.201500143},
journal = {ChemSusChem},
number = 15,
volume = 8,
place = {United States},
year = {Wed Jun 24 00:00:00 EDT 2015},
month = {Wed Jun 24 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 46 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Thermodynamic analysis on energy densities of batteries
journal, January 2011

  • Zu, Chen-Xi; Li, Hong
  • Energy & Environmental Science, Vol. 4, Issue 8
  • DOI: 10.1039/c0ee00777c

Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries
journal, January 2014


Crystal Habit-Tuned Nanoplate Material of Li[Li1/3-2x/3NixMn2/3-x/3]O2 for High-Rate Performance Lithium-Ion Batteries
journal, August 2010


Aliovalent titanium substitution in layered mixed Li Ni–Mn–Co oxides for lithium battery applications
journal, January 2011

  • Kam, Kinson C.; Doeff, Marca M.
  • Journal of Materials Chemistry, Vol. 21, Issue 27
  • DOI: 10.1039/c0jm04193a

Sulfur anion doping and surface modification with LiNiPO4 of a Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for Li-ion batteries
journal, January 2012


Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries
journal, January 2007

  • Thackeray, Michael M.; Kang, Sun-Ho; Johnson, Christopher S.
  • Journal of Materials Chemistry, Vol. 17, Issue 30, p. 3112-3125
  • DOI: 10.1039/b702425h

The role of yttrium content in improving electrochemical performance of layered lithium-rich cathode materials for Li-ion batteries
journal, January 2013

  • Li, Ning; An, Ran; Su, Yuefeng
  • Journal of Materials Chemistry A, Vol. 1, Issue 34
  • DOI: 10.1039/c3ta11665d

Anomalous capacity and cycling stability of xLi2MnO3·(1−x)LiMO2 electrodes (M=Mn, Ni, Co) in lithium batteries at 50°C
journal, April 2007

  • Johnson, Christopher S.; Li, Naichao; Lefief, Christina
  • Electrochemistry Communications, Vol. 9, Issue 4, p. 787-795
  • DOI: 10.1016/j.elecom.2006.11.006

Composition-Tailored Synthesis of Gradient Transition Metal Precursor Particles for Lithium-Ion Battery Cathode Materials
journal, April 2011

  • Koenig, Gary M.; Belharouak, Ilias; Deng, Haixai
  • Chemistry of Materials, Vol. 23, Issue 7
  • DOI: 10.1021/cm200058c

The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries
journal, February 2012

  • Sun, Yang-Kook; Lee, Min-Joon; Yoon, Chong S.
  • Advanced Materials, Vol. 24, Issue 9
  • DOI: 10.1002/adma.201104106

Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material
journal, January 2013

  • He, Wei; Yuan, Dingding; Qian, Jiangfeng
  • Journal of Materials Chemistry A, Vol. 1, Issue 37
  • DOI: 10.1039/c3ta12296d

A New Spinel-Layered Li-Rich Microsphere as a High-Rate Cathode Material for Li-Ion Batteries
journal, April 2014

  • Luo, Dong; Li, Guangshe; Fu, Chaochao
  • Advanced Energy Materials, Vol. 4, Issue 11
  • DOI: 10.1002/aenm.201400062

Manipulating the Electronic Structure of Li-Rich Manganese-Based Oxide Using Polyanions: Towards Better Electrochemical Performance
journal, June 2014


Superior Long-Term Energy Retention and Volumetric Energy Density for Li-Rich Cathode Materials
journal, September 2014

  • Oh, Pilgun; Myeong, Seungjun; Cho, Woongrae
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl502980k

Understanding the Rate Capability of High-Energy-Density Li-Rich Layered Li 1.2 Ni 0.15 Co 0.1 Mn 0.55 O 2 Cathode Materials
journal, December 2013


Development of Microstrain in Aged Lithium Transition Metal Oxides
journal, June 2014

  • Lee, Eung-Ju; Chen, Zonghai; Noh, Hyung-Ju
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl5022859

Ultrathin Spinel Membrane-Encapsulated Layered Lithium-Rich Cathode Material for Advanced Li-Ion Batteries
journal, May 2014

  • Wu, Feng; Li, Ning; Su, Yuefeng
  • Nano Letters, Vol. 14, Issue 6
  • DOI: 10.1021/nl501164y

High Capacity, Surface-Modified Layered Li [Li (1−x)3Mn (2−x)3Nix3Cox ∕ 3 ] O2 Cathodes with Low Irreversible Capacity Loss
journal, March 2006

  • Wu, Y.; Manthiram, A.
  • Electrochemical and Solid-State Letters, Vol. 9, Issue 5, p. A221-A224
  • DOI: 10.1149/1.2180528

Conductive Surface Modification with Aluminum of High Capacity Layered Li[Li 0.2 Mn 0.54 Ni 0.13 Co 0.13 ]O 2 Cathodes
journal, May 2010

  • Liu, Jun; Reeja-Jayan, B.; Manthiram, Arumugam
  • The Journal of Physical Chemistry C, Vol. 114, Issue 20
  • DOI: 10.1021/jp102050s

Synthesis and Electrochemical Properties of ZnO-Coated LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] Spinel as 5 V Cathode Material for Lithium Secondary Batteries
journal, January 2002

  • Sun, Y. -K.; Lee, Y. -S.; Yoshio, M.
  • Electrochemical and Solid-State Letters, Vol. 5, Issue 5
  • DOI: 10.1149/1.1465375

Synthesis, Thermal, and Electrochemical Properties of AlPO[sub 4]-Coated LiNi[sub 0.8]Co[sub 0.1]Mn[sub 0.1]O[sub 2] Cathode Materials for a Li-Ion Cell
journal, January 2004

  • Cho, Jaephil; Kim, Tae-Joon; Kim, Jisuk
  • Journal of The Electrochemical Society, Vol. 151, Issue 11
  • DOI: 10.1149/1.1802411

Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode
journal, May 2006


High Temperature Performance of Surface-Treated Li[sub 1.1](Ni[sub 0.15]Co[sub 0.1]Mn[sub 0.55])O[sub 1.95] Layered Oxide
journal, January 2010

  • Deng, H.; Belharouak, I.; Yoon, C. S.
  • Journal of The Electrochemical Society, Vol. 157, Issue 10
  • DOI: 10.1149/1.3467855

AlF3-Coating to Improve High Voltage Cycling Performance of Li[Ni1∕3]Co1∕3]Mn1∕3]O2 Cathode Materials for Lithium Secondary Batteries
journal, January 2007

  • Sun, Y.-K.; Cho, S.-W.; Lee, S.-W.
  • Journal of The Electrochemical Society, Vol. 154, Issue 3, p. A168-A172
  • DOI: 10.1149/1.2422890

The Effects of AlF[sub 3] Coating on the Performance of Li[Li[sub 0.2]Mn[sub 0.54]Ni[sub 0.13]Co[sub 0.13]]O[sub 2] Positive Electrode Material for Lithium-Ion Battery
journal, January 2008

  • Zheng, J. M.; Zhang, Z. R.; Wu, X. B.
  • Journal of The Electrochemical Society, Vol. 155, Issue 10
  • DOI: 10.1149/1.2966694

Synthesis of Li[Li1.19Ni0.16Co0.08Mn0.57]O2 cathode materials with a high volumetric capacity for Li-ion batteries
journal, April 2012


Effect of Sm2O3 modification on Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material for lithium ion batteries
journal, October 2013


An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries
journal, January 2014

  • Liu, Hui; Du, Chunyu; Yin, Geping
  • Journal of Materials Chemistry A, Vol. 2, Issue 37
  • DOI: 10.1039/C4TA02947J

Microwave Plasma Chemical Vapor Deposition of Carbon Coatings on LiNi[sub 1∕3]Co[sub 1∕3]Mn[sub 1∕3]O[sub 2] for Li-Ion Battery Composite Cathodes
journal, January 2009

  • Marcinek, Marek L.; Wilcox, James W.; Doeff, Marca M.
  • Journal of The Electrochemical Society, Vol. 156, Issue 1
  • DOI: 10.1149/1.3021007

Structural and Electrochemical Characterizations on Li 2 MnO 3 -LiCoO 2 -LiCrO 2 System as Positive Electrode Materials for Rechargeable Lithium Batteries
journal, November 2012

  • Yabuuchi, Naoaki; Yamamoto, Kazuyo; Yoshii, Kazuhiro
  • Journal of The Electrochemical Society, Vol. 160, Issue 1
  • DOI: 10.1149/2.045301jes

Performance improvement of LiCoO2 by MgF2 surface modification and mechanism exploration
journal, July 2014


Atomic Structure of Li 2 MnO 3 after Partial Delithiation and Re-Lithiation
journal, June 2013


New Insight into the Atomic Structure of Electrochemically Delithiated O3-Li (1– x ) CoO 2 (0 ≤ x ≤ 0.5) Nanoparticles
journal, February 2012

  • Lu, Xia; Sun, Yang; Jian, Zelang
  • Nano Letters, Vol. 12, Issue 12
  • DOI: 10.1021/nl303036e

Effects of ratios of Li2MnO3 and Li(Ni1/3Mn1/3Co1/3)O2 phases on the properties of composite cathode powders in spray pyrolysis
journal, July 2013


Study of the Lithium-Rich Integrated Compound xLi 2 MnO 3 ·(1-x)LiMO 2 (x around 0.5; M = Mn, Ni, Co; 2:2:1) and Its Electrochemical Activity as Positive Electrode in Lithium Cells
journal, December 2012

  • Amalraj, Francis; Talianker, Michael; Markovsky, Boris
  • Journal of The Electrochemical Society, Vol. 160, Issue 2
  • DOI: 10.1149/2.070302jes

Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2
journal, June 2006

  • Armstrong, A. Robert; Holzapfel, Michael; Novák, Petr
  • Journal of the American Chemical Society, Vol. 128, Issue 26
  • DOI: 10.1021/ja062027+

The Effects of Acid Treatment on the Electrochemical Properties of 0.5 Li2MnO3 ∙ 0.5 LiNi0.44Co0.25Mn0.31O2 Electrodes in Lithium Cells
journal, January 2006

  • Kang, S.-H.; Johnson, C. S.; Vaughey, J. T.
  • Journal of The Electrochemical Society, Vol. 153, Issue 6, p. A1186-A1192
  • DOI: 10.1149/1.2194764

Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

Electrochemical properties of 0.5Li2MnO3·0.5Li4Mn5O12 nanotubes prepared by a self-templating method
journal, November 2013


Corrosion/Fragmentation of Layered Composite Cathode and Related Capacity/Voltage Fading during Cycling Process
journal, July 2013

  • Zheng, Jianming; Gu, Meng; Xiao, Jie
  • Nano Letters, Vol. 13, Issue 8
  • DOI: 10.1021/nl401849t

Synthesis of spherical spinel LiMn2O4 with commercial manganese carbonate
journal, June 2011


Improvement of electrochemical properties of Li1.1Al0.05Mn1.85O4 achieved by an AlF3 coating
journal, February 2011


High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability
journal, January 2009

  • Wang, Q. Y.; Liu, J.; Murugan, A. Vadivel
  • Journal of Materials Chemistry, Vol. 19, Issue 28
  • DOI: 10.1039/b823506f

Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode
journal, January 2010

  • Liu, Jun; Manthiram, Arumugam
  • Journal of Materials Chemistry, Vol. 20, Issue 19
  • DOI: 10.1039/b925711j

Failure and Stabilization Mechanisms of Graphite Electrodes
journal, March 1997

  • Aurbach, Doron; Levi, Mikhail D.; Levi, Elena
  • The Journal of Physical Chemistry B, Vol. 101, Issue 12
  • DOI: 10.1021/jp962815t

Works referencing / citing this record:

Review on Challenges and Recent Advances in the Electrochemical Performance of High Capacity Li- and Mn-Rich Cathode Materials for Li-Ion Batteries
journal, December 2017

  • Nayak, Prasant Kumar; Erickson, Evan M.; Schipper, Florian
  • Advanced Energy Materials, Vol. 8, Issue 8
  • DOI: 10.1002/aenm.201702397

Von Lithium- zu Natriumionenbatterien: Vorteile, Herausforderungen und Überraschendes
journal, November 2017

  • Nayak, Prasant Kumar; Yang, Liangtao; Brehm, Wolfgang
  • Angewandte Chemie, Vol. 130, Issue 1
  • DOI: 10.1002/ange.201703772

From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises
journal, November 2017

  • Nayak, Prasant Kumar; Yang, Liangtao; Brehm, Wolfgang
  • Angewandte Chemie International Edition, Vol. 57, Issue 1
  • DOI: 10.1002/anie.201703772

Nanoscale surface modification of Li-rich layered oxides for high-capacity cathodes in Li-ion batteries
journal, March 2018


Engineering oxygen vacancies in hierarchically Li-rich layered oxide porous microspheres for high-rate lithium ion battery cathode
journal, June 2019