skip to main content


Title: Effect of biofouling on the performance of amidoxime-based polymeric uranium adsorbents

Here, the Marine Science Laboratory at the Pacific Northwest National Laboratory evaluated the impact of biofouling on uranium adsorbent performance. A surface modified polyethylene adsorbent fiber provided by Oak Ridge National Laboratory, AF adsorbent, was tested either in the presence or absence of light to simulate deployment in shallow or deep marine environments. 42-day exposure tests in column and flume settings showed decreased uranium uptake by biofouling. Uranium uptake was reduced by up to 30 %, in the presence of simulated sunlight, which also increased biomass accumulation and altered the microbial community composition on the fibers. These results suggest that deployment below the photic zone would mitigate the effects of biofouling, resulting in greater yields of uranium extracted from seawater.
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Industrial and Engineering Chemistry Research
Additional Journal Information:
Journal Volume: 55; Journal Issue: 15; Journal ID: ISSN 0888-5885
American Chemical Society (ACS)
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Nuclear Energy (NE)
Country of Publication:
United States
20 FOSSIL-FUELED POWER PLANTS; 36 MATERIALS SCIENCE; biofouling; uranium; adsorbents; seawater; polymeric
OSTI Identifier: