skip to main content

DOE PAGESDOE PAGES

Title: High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes

Direct laser-reduction of graphene oxide (GO), as a lithography-free approach, has been proven effective in manufacturing in-plane micro-supercapacitors (MSCs) with fast ion diffusion. However, the power density and the charge/discharge rate are still limited by the relatively low conductivity of electrodes. Here, we report a facile approach by exploiting femtolaser in situ reduction of the hydrated GO and chloroauric acid (HAuCl 4) nanocomposite simultaneously, which incorporates both the patterning of rGO electrodes and the fabrication of Au current collectors in a single step. These flexible MSCs boast achievements of one-hundred fold increase in electrode conductivities of up to 1.1 × 10 6 S m –1, which provide superior rate capability (50% for the charging rate increase from 0.1 V s –1 to 100 V s –1), sufficiently high frequency responses (362 Hz, 2.76 ms time constant), and large specific capacitances of 0.77 mF cm –2 (17.2 F cm –3 for volumetric capacitance) at 1 V s –1, and 0.46 mF cm –2 (10.2 F cm –3) at 100 V s –1. The use of photo paper substrates enables the flexibility of this fabrication protocol. Moreover, proof-of-concept 3D MSCs are demonstrated with enhanced areal capacitance (up to 3.84 mF cm –2more » at 1 V s –1) while keeping high rate capabilities. As a result, this prototype of all solid-state MSCs demonstrates the broad range of potentials of thin-film based energy storage device applications for flexible, portable, and wearable electronic devices that require a fast charge/discharge rate and high power density.« less
Authors:
 [1] ;  [2] ;  [2] ;  [2] ;  [3] ;  [4] ;  [4] ;  [5] ;  [6] ;  [2] ;  [7]
  1. Univ. of Tennessee, Knoxville, TN (United States); Southeast Univ., Key Lab. of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, Nanjing (China)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. University of Tennessee, Knoxville (UTK)
  4. Univ. of Tennessee, Knoxville, TN (United States)
  5. Southeast Univ., Key Lab. of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, Nanjing (China)
  6. Univ. di Catania, Catania (Italy)
  7. Univ. of Tennessee, Knoxville, TN (United States); Beijing Univ. of Technology, Beijing (China)
Publication Date:
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 9; Journal Issue: 4; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE
OSTI Identifier:
1286936