DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A study of suppressed formation of low-conductivity phases in doped Li7La3Zr2O12 garnets by in situ neutron diffraction

Abstract

Doped Li7La3Zr2O12 garnets, oxide-based solids with good Li+ conductivity and compatibility, show great potential as leading electrolyte material candidates for all-solid-state lithium ion batteries. Still yet, the conductive bulk usually suffers from the presence of secondary phases and the transition towards a low-conductivity tetragonal phase during synthesis. Dopants are designed to stabilize the high-conductive cubic phase and suppress the formation of the low-conductivity phases. In situ neutron diffraction enables a direct observation of the doping effects by monitoring the phase evolutions during garnet synthesis. It reveals the reaction mechanism involving the temporary presence of intermediate phases. The off-stoichiometry due to the liquid Li2CO3 evaporation leads to the residual of the low-conductivity intermediate phase in the as-synthesized bulk. Appropriate doping of an active element may alter the component of the intermediate phases and promote the completion of the reaction. While the dopants aid to stabilize most of the cubic phase, a small amount of tetragonal phase tends to form under a diffusion process. Lastly, the in situ observations provide the guideline of process optimization to suppress the formation of unwanted low-conductivity phases.

Authors:
 [1];  [2];  [3];  [2];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Quantum Condensed Matter Division
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1286868
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 3; Journal Issue: 45; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Chen, Yan, Rangasamy, Ezhiylmurugan, dela Cruz, Clarina R., Liang, Chengdu, and An, Ke. A study of suppressed formation of low-conductivity phases in doped Li7La3Zr2O12 garnets by in situ neutron diffraction. United States: N. p., 2015. Web. doi:10.1039/C5TA04902D.
Chen, Yan, Rangasamy, Ezhiylmurugan, dela Cruz, Clarina R., Liang, Chengdu, & An, Ke. A study of suppressed formation of low-conductivity phases in doped Li7La3Zr2O12 garnets by in situ neutron diffraction. United States. https://doi.org/10.1039/C5TA04902D
Chen, Yan, Rangasamy, Ezhiylmurugan, dela Cruz, Clarina R., Liang, Chengdu, and An, Ke. Mon . "A study of suppressed formation of low-conductivity phases in doped Li7La3Zr2O12 garnets by in situ neutron diffraction". United States. https://doi.org/10.1039/C5TA04902D. https://www.osti.gov/servlets/purl/1286868.
@article{osti_1286868,
title = {A study of suppressed formation of low-conductivity phases in doped Li7La3Zr2O12 garnets by in situ neutron diffraction},
author = {Chen, Yan and Rangasamy, Ezhiylmurugan and dela Cruz, Clarina R. and Liang, Chengdu and An, Ke},
abstractNote = {Doped Li7La3Zr2O12 garnets, oxide-based solids with good Li+ conductivity and compatibility, show great potential as leading electrolyte material candidates for all-solid-state lithium ion batteries. Still yet, the conductive bulk usually suffers from the presence of secondary phases and the transition towards a low-conductivity tetragonal phase during synthesis. Dopants are designed to stabilize the high-conductive cubic phase and suppress the formation of the low-conductivity phases. In situ neutron diffraction enables a direct observation of the doping effects by monitoring the phase evolutions during garnet synthesis. It reveals the reaction mechanism involving the temporary presence of intermediate phases. The off-stoichiometry due to the liquid Li2CO3 evaporation leads to the residual of the low-conductivity intermediate phase in the as-synthesized bulk. Appropriate doping of an active element may alter the component of the intermediate phases and promote the completion of the reaction. While the dopants aid to stabilize most of the cubic phase, a small amount of tetragonal phase tends to form under a diffusion process. Lastly, the in situ observations provide the guideline of process optimization to suppress the formation of unwanted low-conductivity phases.},
doi = {10.1039/C5TA04902D},
journal = {Journal of Materials Chemistry. A},
number = 45,
volume = 3,
place = {United States},
year = {Mon Sep 28 00:00:00 EDT 2015},
month = {Mon Sep 28 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 45 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

In Situ Neutron Diffraction Monitoring of Li 7 La 3 Zr 2 O 12 Formation: Toward a Rational Synthesis of Garnet Solid Electrolytes.
journal, April 2015


High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet
journal, December 2011


Origin of High Li + Conduction in Doped Li 7 La 3 Zr 2 O 12 Garnets
journal, August 2015


Nebulized spray pyrolysis of Al-doped Li7La3Zr2O12 solid electrolyte for battery applications
journal, October 2014


First Results from the VULCAN Diffractometer at the SNS
journal, May 2010


First In Situ Lattice Strains Measurements Under Load at VULCAN
journal, October 2010

  • An, Ke; Skorpenske, Harley D.; Stoica, Alexandru D.
  • Metallurgical and Materials Transactions A, Vol. 42, Issue 1
  • DOI: 10.1007/s11661-010-0495-9

High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si
journal, May 2011

  • Kumazaki, Shota; Iriyama, Yasutoshi; Kim, Ki-Hyun
  • Electrochemistry Communications, Vol. 13, Issue 5, p. 509-512
  • DOI: 10.1016/j.elecom.2011.02.035

Lithium Distribution in Aluminum-Free Cubic Li 7 La 3 Zr 2 O 12
journal, August 2011

  • Xie, Hui; Alonso, Jose A.; Li, Yutao
  • Chemistry of Materials, Vol. 23, Issue 16
  • DOI: 10.1021/cm201671k

Thermal and carbothermic decomposition of Na2CO3 and Li2CO3
journal, February 2001


High lithium ionic conductivity in the garnet-type oxide Li7−XLa3(Zr2−X, NbX)O12 (X=0–2)
journal, March 2011


A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Preparation of Yttrium, Lanthanum, Cerium, and Neodymium Basic Carbonate Particles by Homogeneous Precipitation
journal, July 1987


Lithium ion conductivity of LiLaO2-Li2ZrO3 solid solutions
journal, October 2008

  • Pantyukhina, M. I.; Martem’yanova, Z. S.; Batalov, N. N.
  • Inorganic Materials, Vol. 44, Issue 10
  • DOI: 10.1134/S0020168508100166

Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets
journal, October 2013


Unraveling structural evolution of LiNi0.5Mn1.5O4 by in situ neutron diffraction
journal, January 2013

  • Cai, Lu; Liu, Zengcai; An, Ke
  • Journal of Materials Chemistry A, Vol. 1, Issue 23
  • DOI: 10.1039/c3ta00145h

Synthesis of cubic Li7La3Zr2O12 by modified sol–gel process
journal, August 2011


Mechanism of Zn Particle Oxidation by H 2 O and CO 2 in the Presence of ZnO
journal, November 2014

  • Weibel, David; Jovanovic, Zoran R.; Gálvez, Elena
  • Chemistry of Materials, Vol. 26, Issue 22
  • DOI: 10.1021/cm503064f

Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte
journal, September 2011


Low temperature cubic garnet-type CO2-doped Li7La3Zr2O12
journal, February 2013


Local Structure and Dynamics of Lithium Garnet Ionic Conductors: A Model Material Li 5 La 3 Ta 2 O 12
journal, September 2014

  • Wang, Yuxing; Klenk, Matthew; Page, Katharine
  • Chemistry of Materials, Vol. 26, Issue 19
  • DOI: 10.1021/cm502133c

Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12
journal, June 2012


High lithium ion conductivity of Li7La3Zr2O12 synthesized by solid state reaction
journal, May 2014


Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure
journal, August 2009

  • Awaka, Junji; Kijima, Norihito; Hayakawa, Hiroshi
  • Journal of Solid State Chemistry, Vol. 182, Issue 8, p. 2046-2052
  • DOI: 10.1016/j.jssc.2009.05.020

Phase transformation of the garnet structured lithium ion conductor: Li7La3Zr2O12
journal, September 2014


Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”
journal, January 2011

  • Buschmann, Henrik; Dölle, Janis; Berendts, Stefan
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 43
  • DOI: 10.1039/c1cp22108f

Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

Crystal Chemistry and Stability of “Li7La3Zr2O12 ” Garnet: A Fast Lithium-Ion Conductor
journal, February 2011

  • Geiger, Charles A.; Alekseev, Evgeny; Lazic, Biljana
  • Inorganic Chemistry, Vol. 50, Issue 3, p. 1089-1097
  • DOI: 10.1021/ic101914e

DFT Study of the Role of Al 3+ in the Fast Ion-Conductor Li 7–3 x Al 3+ x La 3 Zr 2 O 12 Garnet
journal, April 2014

  • Rettenwander, Daniel; Blaha, Peter; Laskowski, Robert
  • Chemistry of Materials, Vol. 26, Issue 8
  • DOI: 10.1021/cm5000999

Effect of Ga incorporation on the structure and Li ion conductivity of La3Zr2Li7O12
journal, January 2012

  • Howard, M. A.; Clemens, O.; Kendrick, E.
  • Dalton Transactions, Vol. 41, Issue 39
  • DOI: 10.1039/c2dt31318a

Review of crystalline lithium-ion conductors suitable for high temperature battery applications
journal, December 1997


Sol–gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure
journal, March 2011


Glycine–nitrate synthesis of Sr doped La 2 Zr 2 O 7 pyrochlore powder
journal, January 2011


Ionic conductivity in Li 3 N single crystals
journal, June 1977

  • Alpen, U. v.; Rabenau, A.; Talat, G. H.
  • Applied Physics Letters, Vol. 30, Issue 12
  • DOI: 10.1063/1.89283

Local impedance spectroscopic and microstructural analyses of Al-in-diffused Li7La3Zr2O12
journal, May 2014


EXPGUI , a graphical user interface for GSAS
journal, April 2001


Li ion conduction in Li2ZrO3, Li4ZrO4, and LiScO2
journal, February 1981


Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12
journal, July 2012


Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration
journal, January 2013

  • Larraz, G.; Orera, A.; Sanjuán, M. L.
  • Journal of Materials Chemistry A, Vol. 1, Issue 37
  • DOI: 10.1039/c3ta11996c

Visualizing the Structural Evolution of LSM/xYSZ Composite Cathodes for SOFC by in-situ Neutron Diffraction
journal, June 2014

  • Chen, Yan; Yang, Ling; Ren, Fei
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep05179

Crystal Structure of Fast Lithium-ion-conducting Cubic Li 7 La 3 Zr 2 O 12
journal, January 2011

  • Awaka, Junji; Takashima, Akira; Kataoka, Kunimitsu
  • Chemistry Letters, Vol. 40, Issue 1
  • DOI: 10.1246/cl.2011.60

Compatibility of Li[sub 7]La[sub 3]Zr[sub 2]O[sub 12] Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode
journal, January 2010

  • Kotobuki, Masashi; Munakata, Hirokazu; Kanamura, Kiyoshi
  • Journal of The Electrochemical Society, Vol. 157, Issue 10
  • DOI: 10.1149/1.3474232

A Novel Chemical Route to Prepare La 2 Zr 2 O 7 Pyrochlore
journal, November 2012

  • Kong, Linggen; Karatchevtseva, Inna; Gregg, Daniel J.
  • Journal of the American Ceramic Society, Vol. 96, Issue 3
  • DOI: 10.1111/jace.12060

Structure and ionic conductivity in lithium garnets
journal, January 2010

  • Cussen, Edmund J.
  • Journal of Materials Chemistry, Vol. 20, Issue 25
  • DOI: 10.1039/b925553b

A preliminary investigation of fracture toughness of Li7La3Zr2O12 and its comparison to other solid Li-ionconductors
journal, April 2013


Densification and lithium ion conductivity of garnet-type Li 7− x La 3 Zr 2− x Ta x O 12 ( x = 0.25) solid electrolytes
journal, July 2013


The high-resolution powder diffractometer at the high flux isotope reactor
journal, March 2010


The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12
journal, January 2012

  • Rangasamy, Ezhiyl; Wolfenstine, Jeff; Sakamoto, Jeffrey
  • Solid State Ionics, Vol. 206, p. 28-32
  • DOI: 10.1016/j.ssi.2011.10.022

Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery
journal, January 2011


Studies on Thermal Decomposition Process of Lanthanum Hydroxide
journal, January 1976

  • Ino, Eiji; Shimizu, Kenichi; Yamate, Tamotsu
  • Journal of the Society of Materials Science, Japan, Vol. 25, Issue 279
  • DOI: 10.2472/jsms.25.1165

Works referencing / citing this record:

Achieving high performance for aluminum stabilized Li 7 La 3 Zr 2 O 12 solid electrolytes for all solid‐state Li‐ion batteries: A thermodynamic point of view
journal, October 2018

  • Dermenci, Kamil Burak; Turan, Servet
  • International Journal of Energy Research, Vol. 43, Issue 1
  • DOI: 10.1002/er.4203

Effect of Nb–Sm co-doping on the ionic conductivity of Li7La3Zr2O12 electrolytes
journal, January 2020

  • Zhang, Qixi; Luo, Yali; Chen, Sainan
  • Journal of Materials Science: Materials in Electronics, Vol. 31, Issue 3
  • DOI: 10.1007/s10854-019-02804-w

Consolidating the grain boundary of the garnet electrolyte LLZTO with Li 3 BO 3 for high-performance LiNi 0.8 Co 0.1 Mn 0.1 O 2 /LiFePO 4 hybrid solid batteries
journal, January 2019

  • Xie, Huilin; Li, Chunli; Kan, Wang Hay
  • Journal of Materials Chemistry A, Vol. 7, Issue 36
  • DOI: 10.1039/c9ta03263k

RHEGAL: Resistive heating gas enclosure loadframe for in situ neutron scattering
journal, September 2018

  • An, Ke; Armitage, Douglas P.; Yu, Zhenzhen
  • Review of Scientific Instruments, Vol. 89, Issue 9
  • DOI: 10.1063/1.5033566

A suite-level review of the neutron powder diffraction instruments at Oak Ridge National Laboratory
journal, September 2018

  • Calder, S.; An, K.; Boehler, R.
  • Review of Scientific Instruments, Vol. 89, Issue 9
  • DOI: 10.1063/1.5033906

Stress-induced charge-ordering process in LiMn 2 O 4
journal, July 2016


Event-based processing of neutron scattering data at the Spallation Neutron Source
journal, May 2018

  • Granroth, Garrett E.; An, Ke; Smith, Hillary L.
  • Journal of Applied Crystallography, Vol. 51, Issue 3
  • DOI: 10.1107/s1600576718004727