skip to main content


Title: Poly(ethylene oxide)-Assisted Macromolecular Self-Assembly of Lignin in ABS Matrix for Sustainable Composite Applications

Here we report the compatibilization of biomass-derived lignin polymer in acrylonitrile butadiene styrene (ABS) thermoplastic matrix without loss of mechanical properties via poly(ethylene oxide) (PEO)-mediated macromolecular self-assembly. ABS was blended with lignin in different concentrations, and blends with 10 wt % PEO (relative to lignin) were prepared. The relative tensile strength improved slightly at low lignin content but diminished rapidly as the lignin content was increased. However, the inclusion of PEO as an interfacial adhesion promoter helped avoid deleterious effects. Dynamic mechanical analysis showed that PEO plasticized the hard phase and thus lowered the activation energy (E a) for its relaxation but caused stiffening of the soft phase and increased its E a. Microscopy revealed that incorporating lignin in ABS led to the statistical dispersion of discrete lignin domains (300–1000 nm) which, after PEO addition, were reduced to smaller interconnected particles (200–500 nm). The lignin-extended partially renewable ABS resins showed shear-thinning behavior and reduced viscosity compared to neat ABS. The preferred lignin-loaded compositions reinforced with 20 vol % chopped carbon fibers exhibited mechanical performances (77–80 MPa) equivalent to those of reinforced ABS materials reportedly used in 3D printing applications. In conclusion, this approach could lower the cost of ABS whilemore » reducing its carbon footprint.« less
 [1] ;  [2] ;  [2] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
ACS Sustainable Chemistry & Engineering
Additional Journal Information:
Journal Volume: 3; Journal Issue: 12; Journal ID: ISSN 2168-0485
American Chemical Society (ACS)
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org:
USDOE Office of Science (SC); Work for Others (WFO)
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; Lignin; Polymer; Renewable composites; Self-assembly; Sustainable materials
OSTI Identifier: