skip to main content


Title: Three-dimensional simulation of H-mode plasmas with localized divertor impurity injection on Alcator C-Mod using the edge transport code EMC3-EIRENE

We study experiments in Alcator C-Mod to assess the level of toroidal asymmetry in divertor conditions resulting from poloidally and toroidally localized extrinsic impurity gas seeding show a weak toroidal peaking (~1.1) in divertor electron temperatures for high-power enhanced D-alpha H-modeplasmas. This is in contrast to similar experiments in Ohmically heated L-modeplasmas, which showed a clear toroidal modulation in the divertor electron temperature. Modeling of these experiments using the 3D edge transport code EMC3-EIRENE [Y. Feng et al., J. Nucl. Mater. 241, 930 (1997)] qualitatively reproduces these trends, and indicates that the different response in the simulations is due to the ionization location of the injected nitrogen. Low electron temperatures in the private flux region (PFR) in L-mode result in a PFR plasma that is nearly transparent to neutral nitrogen, while in H-mode the impurities are ionized in close proximity to the injection location, with this latter case yielding a largely axisymmetric radiation pattern in the scrape-off-layer. In conclusion, the consequences for the ITER gas injection system are discussed. Quantitative agreement with the experiment is lacking in some areas, suggesting potential areas for improving the physics model in EMC3-EIRENE.
 [1] ;  [2] ;  [3] ;  [3] ;  [2] ;  [3] ;  [4] ;  [5]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. University of York, Heslington (United Kingdom)
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center
  4. ITER Organization, St. Paul Lez Durance (France)
  5. Max Planck Institute for Plasma Physics, Greifswald (Germany)
Publication Date:
Grant/Contract Number:
AC05-00OR22725; FC02-99ER54512
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 22; Journal Issue: 5; Journal ID: ISSN 1070-664X
American Institute of Physics (AIP)
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1228605