skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells

Abstract

Here, we demonstrate nearly 30% power conversion efficiency in ultra-thin (~200 nm) gallium arsenide photonic crystal solar cells by numerical solution of the coupled electromagnetic Maxwell and semiconductor drift-diffusion equations. Our architecture enables wave-interference-induced solar light trapping in the wavelength range from 300-865 nm, leading to absorption of almost 90% of incoming sunlight. Our optimized design for 200 nm equivalent bulk thickness of GaAs, is a square-lattice, slanted conical-pore photonic crystal (lattice constant 550 nm, pore diameter 600 nm, and pore depth 290 nm), passivated with AlGaAs, deposited on a silver back-reflector, with ITO upper contact and encapsulated with SiO2. Our model includes both radiative and non-radiative recombination of photo-generated charge carriers. When all light from radiative recombination is assumed to escape the structure, a maximum achievable photocurrent density (MAPD) of 27.6 mA/cm2 is obtained from normally incident AM 1.5 sunlight. For a surface non-radiative recombination velocity of 103 cm/s, this corresponds to a solar power conversion efficiency of 28.3%. When all light from radiative recombination is trapped and reabsorbed (complete photon recycling) the power conversion efficiency increases to 29%. If the surface recombination velocity is reduced to 10 cm/sec, photon recycling is much more effective and the power conversionmore » efficiency reaches 30.6%.« less

Authors:
 [1];  [1]
  1. Univ. of Toronto, Toronto, ON (Canada). Dept. of Physics
Publication Date:
Research Org.:
Univ. of Toronto, Toronto, ON (Canada)
Sponsoring Org.:
USDOE
OSTI Identifier:
1285868
Grant/Contract Number:  
FG02-06ER46347
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; efficiency; localization; absorption; devices

Citation Formats

Eyderman, Sergey, and John, Sajeev. Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells. United States: N. p., 2016. Web. doi:10.1038/srep28303.
Eyderman, Sergey, & John, Sajeev. Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells. United States. doi:10.1038/srep28303.
Eyderman, Sergey, and John, Sajeev. Thu . "Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells". United States. doi:10.1038/srep28303. https://www.osti.gov/servlets/purl/1285868.
@article{osti_1285868,
title = {Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells},
author = {Eyderman, Sergey and John, Sajeev},
abstractNote = {Here, we demonstrate nearly 30% power conversion efficiency in ultra-thin (~200 nm) gallium arsenide photonic crystal solar cells by numerical solution of the coupled electromagnetic Maxwell and semiconductor drift-diffusion equations. Our architecture enables wave-interference-induced solar light trapping in the wavelength range from 300-865 nm, leading to absorption of almost 90% of incoming sunlight. Our optimized design for 200 nm equivalent bulk thickness of GaAs, is a square-lattice, slanted conical-pore photonic crystal (lattice constant 550 nm, pore diameter 600 nm, and pore depth 290 nm), passivated with AlGaAs, deposited on a silver back-reflector, with ITO upper contact and encapsulated with SiO2. Our model includes both radiative and non-radiative recombination of photo-generated charge carriers. When all light from radiative recombination is assumed to escape the structure, a maximum achievable photocurrent density (MAPD) of 27.6 mA/cm2 is obtained from normally incident AM 1.5 sunlight. For a surface non-radiative recombination velocity of 103 cm/s, this corresponds to a solar power conversion efficiency of 28.3%. When all light from radiative recombination is trapped and reabsorbed (complete photon recycling) the power conversion efficiency increases to 29%. If the surface recombination velocity is reduced to 10 cm/sec, photon recycling is much more effective and the power conversion efficiency reaches 30.6%.},
doi = {10.1038/srep28303},
journal = {Scientific Reports},
number = ,
volume = 6,
place = {United States},
year = {2016},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electromagnetic Absorption in a Disordered Medium near a Photon Mobility Edge
journal, November 1984


Strong localization of photons in certain disordered dielectric superlattices
journal, June 1987


Inhibited Spontaneous Emission in Solid-State Physics and Electronics
journal, May 1987


Optimal structures for classical wave localization: an alternative to the ioffe-regel criterion
journal, November 1988


Light trapping and absorption optimization in certain thin-film photonic crystal architectures
journal, August 2008


Solar energy trapping with modulated silicon nanowire photonic crystals
journal, October 2012

  • Demésy, Guillaume; John, Sajeev
  • Journal of Applied Physics, Vol. 112, Issue 7
  • DOI: 10.1063/1.4752775

Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping
journal, April 2013

  • Eyderman, Sergey; John, Sajeev; Deinega, Alexei
  • Journal of Applied Physics, Vol. 113, Issue 15
  • DOI: 10.1063/1.4802442

Near perfect solar absorption in ultra-thin-film GaAs photonic crystals
journal, January 2014

  • Eyderman, Sergey; Deinega, Alexei; John, Sajeev
  • J. Mater. Chem. A, Vol. 2, Issue 3
  • DOI: 10.1039/C3TA13655H

Solar power conversion efficiency in modulated silicon nanowire photonic crystals
journal, October 2012

  • Deinega, Alexei; John, Sajeev
  • Journal of Applied Physics, Vol. 112, Issue 7
  • DOI: 10.1063/1.4752776

Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals
journal, June 2013

  • Deinega, Alexei; Eyderman, Sergey; John, Sajeev
  • Journal of Applied Physics, Vol. 113, Issue 22
  • DOI: 10.1063/1.4809982

Limiting efficiency of silicon solar cells
journal, May 1984

  • Tiedje, T.; Yablonovitch, E.; Cody, G.D.
  • IEEE Transactions on Electron Devices, Vol. 31, Issue 5, p. 711-716
  • DOI: 10.1109/T-ED.1984.21594

Light-trapping optimization in wet-etched silicon photonic crystal solar cells
journal, July 2015

  • Eyderman, Sergey; John, Sajeev; Hafez, M.
  • Journal of Applied Physics, Vol. 118, Issue 2
  • DOI: 10.1063/1.4926548

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

Solar cell efficiency tables (version 39): Solar cell efficiency tables (version 39)
journal, December 2011

  • Green, Martin A.; Emery, Keith; Hishikawa, Yoshihiro
  • Progress in Photovoltaics: Research and Applications, Vol. 20, Issue 1
  • DOI: 10.1002/pip.2163

26.1% thin-film GaAs solar cell using epitaxial lift-off
journal, September 2009


Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit
journal, July 2012

  • Miller, Owen D.; Yablonovitch, Eli; Kurtz, Sarah R.
  • IEEE Journal of Photovoltaics, Vol. 2, Issue 3, p. 303-311
  • DOI: 10.1109/JPHOTOV.2012.2198434

Highly efficient GaAs solar cells by limiting light emission angle
journal, January 2013

  • Kosten, Emily D.; Atwater, Jackson H.; Parsons, James
  • Light: Science & Applications, Vol. 2, Issue 1, p. e45-e45
  • DOI: 10.1038/lsa.2013.1

Numerical modeling of photon recycling in solar cells
journal, January 1994

  • Durbin, S. M.; Gray, J. L.
  • IEEE Transactions on Electron Devices, Vol. 41, Issue 2
  • DOI: 10.1109/16.277372

Two-dimensional model of photon recycling in direct gap semiconductor devices
journal, October 1997

  • Parks, Joseph W.; Brennan, Kevin F.; Smith, Arlynn W.
  • Journal of Applied Physics, Vol. 82, Issue 7
  • DOI: 10.1063/1.365622

Thin film approaches for high-efficiency III–V cells
journal, May 1991


Impact of Photon Recycling on GaAs Solar Cell Designs
journal, November 2015


Impact of surfaces on the optical properties of GaAs nanowires
journal, November 2010

  • Demichel, O.; Heiss, M.; Bleuse, J.
  • Applied Physics Letters, Vol. 97, Issue 20
  • DOI: 10.1063/1.3519980

Performance-limiting factors for GaAs-based single nanowire photovoltaics
journal, January 2014

  • Wang, Xufeng; Khan, Mohammad Ryyan; Lundstrom, Mark
  • Optics Express, Vol. 22, Issue S2
  • DOI: 10.1364/OE.22.00A344

Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition
journal, May 2012

  • Otto, Martin; Kroll, Matthias; Käsebier, Thomas
  • Applied Physics Letters, Vol. 100, Issue 19
  • DOI: 10.1063/1.4714546

Effects of prelayers on minority‐carrier lifetime in GaAs/AlGaAs double heterostructures grown by molecular beam epitaxy
journal, December 1984

  • Dawson, P.; Woodbridge, K.
  • Applied Physics Letters, Vol. 45, Issue 11
  • DOI: 10.1063/1.95107

Electrical and Optical Characterization of Surface Passivation in GaAs Nanowires
journal, January 2012

  • Chang, Chia-Chi; Chi, Chun-Yung; Yao, Maoqing
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl301391h

Epitaxial growth of three-dimensionally architectured optoelectronic devices
journal, July 2011

  • Nelson, Erik C.; Dias, Neville L.; Bassett, Kevin P.
  • Nature Materials, Vol. 10, Issue 9
  • DOI: 10.1038/nmat3071

Finite difference discretization of semiconductor drift-diffusion equations for nanowire solar cells
journal, October 2012


The chemical potential of radiation
journal, June 1982


    Works referencing / citing this record: