skip to main content

DOE PAGESDOE PAGES

Title: Itinerant and localized magnetization dynamics in antiferromagnetic Ho

Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L 3 absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Here, tuning the x-ray energy to the electric dipole (E1, 2p → 5d) or quadrupole (E2, 2p → 4f) transition allows us to selectively and independently study the spin dynamics of the itinerant 5d and localized 4f electronic subsystems via the suppression of the magnetic (2 1 3–τ) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4f systems, suggesting that the loss of magnetic order occurs via a similar spin-flip process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4f–5d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magneto-striction leads to a transient shift of the magnetic satellite peak.
Authors:
 [1] ;  [2] ;  [3] ;  [4] ;  [5] ;  [6] ;  [7] ;  [8] ;  [8] ;  [8] ;  [8] ;  [8] ;  [4] ;  [2] ;  [1]
  1. Paul Scherrer Inst. (PSI), Villigen (Switzerland)
  2. ETH Zurich, Zurich (Switzerland)
  3. Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Univ. Potsdam, Potsdam-Golm (Germany)
  4. Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany)
  5. Ruhr-Univ. Bochum, Bochum (Germany)
  6. Ames Lab., Ames, IA (United States)
  7. Iowa State Univ., Ames, IA (United States)
  8. SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Report Number(s):
IS-J-8844
Journal ID: ISSN 0031-9007; PRLTAO
Grant/Contract Number:
AC02-07CH11358; AC02-76SF00515; 05K13PC1
Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 116; Journal Issue: 25; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Research Org:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE
OSTI Identifier:
1278746
Alternate Identifier(s):
OSTI ID: 1258705

Rettig, L., Dornes, C., Thielemann-Kuhn, N., Pontius, N., Zabel, H., Schlagel, D. L., Lograsso, T. A., Chollet, M., Robert, A., Sikorski, M., Song, S., Glownia, J. M., SchuBler-Langeheine, C., Johnson, S. L., and Staub, U.. Itinerant and localized magnetization dynamics in antiferromagnetic Ho. United States: N. p., Web. doi:10.1103/PhysRevLett.116.257202.
Rettig, L., Dornes, C., Thielemann-Kuhn, N., Pontius, N., Zabel, H., Schlagel, D. L., Lograsso, T. A., Chollet, M., Robert, A., Sikorski, M., Song, S., Glownia, J. M., SchuBler-Langeheine, C., Johnson, S. L., & Staub, U.. Itinerant and localized magnetization dynamics in antiferromagnetic Ho. United States. doi:10.1103/PhysRevLett.116.257202.
Rettig, L., Dornes, C., Thielemann-Kuhn, N., Pontius, N., Zabel, H., Schlagel, D. L., Lograsso, T. A., Chollet, M., Robert, A., Sikorski, M., Song, S., Glownia, J. M., SchuBler-Langeheine, C., Johnson, S. L., and Staub, U.. 2016. "Itinerant and localized magnetization dynamics in antiferromagnetic Ho". United States. doi:10.1103/PhysRevLett.116.257202. https://www.osti.gov/servlets/purl/1278746.
@article{osti_1278746,
title = {Itinerant and localized magnetization dynamics in antiferromagnetic Ho},
author = {Rettig, L. and Dornes, C. and Thielemann-Kuhn, N. and Pontius, N. and Zabel, H. and Schlagel, D. L. and Lograsso, T. A. and Chollet, M. and Robert, A. and Sikorski, M. and Song, S. and Glownia, J. M. and SchuBler-Langeheine, C. and Johnson, S. L. and Staub, U.},
abstractNote = {Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L3 absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Here, tuning the x-ray energy to the electric dipole (E1, 2p → 5d) or quadrupole (E2, 2p → 4f) transition allows us to selectively and independently study the spin dynamics of the itinerant 5d and localized 4f electronic subsystems via the suppression of the magnetic (2 1 3–τ) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4f systems, suggesting that the loss of magnetic order occurs via a similar spin-flip process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4f–5d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magneto-striction leads to a transient shift of the magnetic satellite peak.},
doi = {10.1103/PhysRevLett.116.257202},
journal = {Physical Review Letters},
number = 25,
volume = 116,
place = {United States},
year = {2016},
month = {6}
}