skip to main content


Title: Magnetic anisotropy, damping, and interfacial spin transport in Pt/LSMO bilayers

In this paper, we report ferromagnetic resonance measurements of magnetic anisotropy and damping in epitaxial La 0.7Sr 0.3MnO 3 (LSMO) and Pt capped LSMO thin films on SrTiO 3 (001) substrates. The measurements reveal large negative perpendicular magnetic anisotropy and a weaker uniaxial in-plane anisotropy that are unaffected by the Pt cap. The Gilbert damping of the bare LSMO films is found to be low α = 1.9(1) × 10 -3, and two-magnon scattering is determined to be significant and strongly anisotropic. The Pt cap increases the damping by 50% due to spin pumping, which is also directly detected via inverse spin Hall effect in Pt. Our research demonstrates efficient spin transport across the Pt/LSMO interface.
 [1] ;  [1] ;  [2] ;  [2] ;  [1] ;  [3] ;  [1]
  1. Univ. of California, Irvine, CA (United States)
  2. Stanford Univ., Stanford, CA (United States)
  3. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
AIP Advances
Additional Journal Information:
Journal Volume: 6; Journal Issue: 5; Journal ID: ISSN 2158-3226
American Institute of Physics (AIP)
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
36 MATERIALS SCIENCE; magnetic anisotropy; magnetic films; epitaxy; linewidths; metallic thin films
OSTI Identifier: