DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ion mobility spectrometry–mass spectrometry (IMS–MS) for on- and offline analysis of atmospheric gas and aerosol species

Abstract

Abstract. Measurement techniques that provide molecular-level information are needed to elucidate the multiphase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS–MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS–MS after ionization with a custom-built nitrate chemical ionization (CI) source. This CI–IMS–MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS) ambient field campaign in the forested SE US. The ambient IMS–MS signals are consistent with laboratory IMS–MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-D IMS–MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown tomore » be separable with IMS–MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. Controlled fragmentation of precursor ions by collisionally induced dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of oligomers, and confirm the presence of the organosulfate functional group.« less

Authors:
ORCiD logo; ; ORCiD logo; ; ; ; ; ; ; ; ORCiD logo; ; ORCiD logo; ; ; ; ;
Publication Date:
Research Org.:
Boston College, Chestnut Hill, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1271467
Alternate Identifier(s):
OSTI ID: 1360128
Grant/Contract Number:  
SC001110; SC0011935
Resource Type:
Published Article
Journal Name:
Atmospheric Measurement Techniques (Online)
Additional Journal Information:
Journal Name: Atmospheric Measurement Techniques (Online) Journal Volume: 9 Journal Issue: 7; Journal ID: ISSN 1867-8548
Publisher:
Copernicus Publications, EGU
Country of Publication:
Germany
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Krechmer, Jordan E., Groessl, Michael, Zhang, Xuan, Junninen, Heikki, Massoli, Paola, Lambe, Andrew T., Kimmel, Joel R., Cubison, Michael J., Graf, Stephan, Lin, Ying-Hsuan, Budisulistiorini, Sri H., Zhang, Haofei, Surratt, Jason D., Knochenmuss, Richard, Jayne, John T., Worsnop, Douglas R., Jimenez, Jose-Luis, and Canagaratna, Manjula R. Ion mobility spectrometry–mass spectrometry (IMS–MS) for on- and offline analysis of atmospheric gas and aerosol species. Germany: N. p., 2016. Web. doi:10.5194/amt-9-3245-2016.
Krechmer, Jordan E., Groessl, Michael, Zhang, Xuan, Junninen, Heikki, Massoli, Paola, Lambe, Andrew T., Kimmel, Joel R., Cubison, Michael J., Graf, Stephan, Lin, Ying-Hsuan, Budisulistiorini, Sri H., Zhang, Haofei, Surratt, Jason D., Knochenmuss, Richard, Jayne, John T., Worsnop, Douglas R., Jimenez, Jose-Luis, & Canagaratna, Manjula R. Ion mobility spectrometry–mass spectrometry (IMS–MS) for on- and offline analysis of atmospheric gas and aerosol species. Germany. https://doi.org/10.5194/amt-9-3245-2016
Krechmer, Jordan E., Groessl, Michael, Zhang, Xuan, Junninen, Heikki, Massoli, Paola, Lambe, Andrew T., Kimmel, Joel R., Cubison, Michael J., Graf, Stephan, Lin, Ying-Hsuan, Budisulistiorini, Sri H., Zhang, Haofei, Surratt, Jason D., Knochenmuss, Richard, Jayne, John T., Worsnop, Douglas R., Jimenez, Jose-Luis, and Canagaratna, Manjula R. Mon . "Ion mobility spectrometry–mass spectrometry (IMS–MS) for on- and offline analysis of atmospheric gas and aerosol species". Germany. https://doi.org/10.5194/amt-9-3245-2016.
@article{osti_1271467,
title = {Ion mobility spectrometry–mass spectrometry (IMS–MS) for on- and offline analysis of atmospheric gas and aerosol species},
author = {Krechmer, Jordan E. and Groessl, Michael and Zhang, Xuan and Junninen, Heikki and Massoli, Paola and Lambe, Andrew T. and Kimmel, Joel R. and Cubison, Michael J. and Graf, Stephan and Lin, Ying-Hsuan and Budisulistiorini, Sri H. and Zhang, Haofei and Surratt, Jason D. and Knochenmuss, Richard and Jayne, John T. and Worsnop, Douglas R. and Jimenez, Jose-Luis and Canagaratna, Manjula R.},
abstractNote = {Abstract. Measurement techniques that provide molecular-level information are needed to elucidate the multiphase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS–MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS–MS after ionization with a custom-built nitrate chemical ionization (CI) source. This CI–IMS–MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS) ambient field campaign in the forested SE US. The ambient IMS–MS signals are consistent with laboratory IMS–MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-D IMS–MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown to be separable with IMS–MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. Controlled fragmentation of precursor ions by collisionally induced dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of oligomers, and confirm the presence of the organosulfate functional group.},
doi = {10.5194/amt-9-3245-2016},
journal = {Atmospheric Measurement Techniques (Online)},
number = 7,
volume = 9,
place = {Germany},
year = {2016},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.5194/amt-9-3245-2016

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: A schematic diagram of the IMS–TOF (a). The instrument can be used with different ionization sources, including the ESI source shown in (a) and the custom-built nitrate-ion chemical ionization source (NO$^{-}_{3}$ -CI) attached to the front end of the desolvation region shown in (b). The diagram is notmore » drawn to scale.« less

Save / Share:

Works referenced in this record:

Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation
journal, July 2015

  • Krechmer, Jordan E.; Coggon, Matthew M.; Massoli, Paola
  • Environmental Science & Technology, Vol. 49, Issue 17
  • DOI: 10.1021/acs.est.5b02031

Known and Unexplored Organic Constituents in the Earth's Atmosphere
journal, March 2007

  • Goldstein, Allen H.; Galbally, Ian E.
  • Environmental Science & Technology, Vol. 41, Issue 5
  • DOI: 10.1021/es072476p

Mobility of gaseous lons in weak electric fields
journal, July 1958


Ion mobility–mass spectrometry analysis of large protein complexes
journal, June 2008

  • Ruotolo, Brandon T.; Benesch, Justin L. P.; Sandercock, Alan M.
  • Nature Protocols, Vol. 3, Issue 7
  • DOI: 10.1038/nprot.2008.78

The AeroCom evaluation and intercomparison of organic aerosol in global models
journal, January 2014

  • Tsigaridis, K.; Daskalakis, N.; Kanakidou, M.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 19
  • DOI: 10.5194/acp-14-10845-2014

Hadamard Transform Time-of-Flight Mass Spectrometry: More Signal, More of the Time
journal, January 2003

  • Zare, Richard N.; Fernández, Facundo M.; Kimmel, Joel R.
  • Angewandte Chemie International Edition, Vol. 42, Issue 1
  • DOI: 10.1002/anie.200390047

Theory of plasma chromatography/gaseous electrophoresis. Review
journal, June 1975

  • Revercomb, H. E.; Mason, E. A.
  • Analytical Chemistry, Vol. 47, Issue 7
  • DOI: 10.1021/ac60357a043

Aerosol-chamber study of the α-pinene/O3 reaction: influence of particle acidity on aerosol yields and products
journal, February 2004


IUPAC Compendium of Chemical Terminology
book, January 2009


Absolute Values of the Electron Mobility in Hydrogen
journal, March 1936


Measurement of the gas phase concentration of H 2 SO 4 and methane sulfonic acid and estimates of H 2 SO 4 production and loss in the atmosphere
journal, May 1993

  • Eisele, F. L.; Tanner, D. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 98, Issue D5
  • DOI: 10.1029/93JD00031

A new chemical ionization mass spectrometer technique for the fast measurement of gas phase nitric acid in the atmosphere
journal, February 1998

  • Mauldin, R. L.; Tanner, D. J.; Eisele, F. L.
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D3
  • DOI: 10.1029/97JD02212

Petroleum Crude Oil Characterization by IMS-MS and FTICR MS
journal, December 2009

  • Fernandez-Lima, Francisco A.; Becker, Christopher; McKenna, Amy M.
  • Analytical Chemistry, Vol. 81, Issue 24
  • DOI: 10.1021/ac901594f

A global model of natural volatile organic compound emissions
journal, January 1995

  • Guenther, Alex; Hewitt, C. Nicholas; Erickson, David
  • Journal of Geophysical Research, Vol. 100, Issue D5
  • DOI: 10.1029/94JD02950

Rapid Autoxidation Forms Highly Oxidized RO 2 Radicals in the Atmosphere
journal, October 2014

  • Jokinen, Tuija; Sipilä, Mikko; Richters, Stefanie
  • Angewandte Chemie International Edition, Vol. 53, Issue 52
  • DOI: 10.1002/anie.201408566

Chemical climatology of the southeastern United States, 1999–2013
journal, January 2014

  • Hidy, G. M.; Blanchard, C. L.; Baumann, K.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 21
  • DOI: 10.5194/acp-14-11893-2014

Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides
journal, April 2013

  • Lin, Y. -H.; Zhang, H.; Pye, H. O. T.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 17
  • DOI: 10.1073/pnas.1221150110

Improved Momentum-Transfer Theory for Ion Mobility. 1. Derivation of the Fundamental Equation
journal, November 2012

  • Siems, William F.; Viehland, Larry A.; Hill, Herbert H.
  • Analytical Chemistry, Vol. 84, Issue 22
  • DOI: 10.1021/ac301779s

Effects of Chemical Complexity on the Autoxidation Mechanisms of Endocyclic Alkene Ozonolysis Products: From Methylcyclohexenes toward Understanding α-Pinene
journal, November 2014

  • Rissanen, Matti P.; Kurtén, Theo; Sipilä, Mikko
  • The Journal of Physical Chemistry A, Vol. 119, Issue 19
  • DOI: 10.1021/jp510966g

Determination of polar terpene oxidation products in aerosols by liquid chromatography–ion trap mass spectrometry
journal, February 1999


Aerosol mass spectrometer constraint on the global secondary organic aerosol budget
journal, January 2011

  • Spracklen, D. V.; Jimenez, J. L.; Carslaw, K. S.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 23
  • DOI: 10.5194/acp-11-12109-2011

Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions
journal, January 2009

  • Galloway, M. M.; Chhabra, P. S.; Chan, A. W. H.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 10
  • DOI: 10.5194/acp-9-3331-2009

Field intercomparison of the gas/particle partitioning of oxygenated organics during the Southern Oxidant and Aerosol Study (SOAS) in 2013
journal, September 2016

  • Thompson, Samantha L.; Yatavelli, Reddy L. N.; Stark, Harald
  • Aerosol Science and Technology, Vol. 51, Issue 1
  • DOI: 10.1080/02786826.2016.1254719

Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications
journal, March 2014

  • Paglia, Giuseppe; Williams, Jonathan P.; Menikarachchi, Lochana
  • Analytical Chemistry, Vol. 86, Issue 8
  • DOI: 10.1021/ac500405x

Ionization mechanisms related to negative Ion APPI, APCI, and DART
journal, August 2009

  • McEwen, Charles N.; Larsen, Barbara S.
  • Journal of the American Society for Mass Spectrometry, Vol. 20, Issue 8
  • DOI: 10.1016/j.jasms.2009.04.010

Organic and inorganic decomposition products from the thermal desorption of atmospheric particles
journal, January 2016

  • Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen
  • Atmospheric Measurement Techniques, Vol. 9, Issue 4
  • DOI: 10.5194/amt-9-1569-2016

Direct Observations of Atmospheric Aerosol Nucleation
journal, February 2013


In situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry
journal, January 2013

  • Vogel, A. L.; Äijälä, M.; Corrigan, A. L.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 21
  • DOI: 10.5194/acp-13-10933-2013

Single-particle mass spectrometry of tropospheric aerosol particles: TROPOSPHERIC AEROSOL PARTICLES
journal, September 2006

  • Murphy, D. M.; Cziczo, D. J.; Froyd, K. D.
  • Journal of Geophysical Research: Atmospheres, Vol. 111, Issue D23
  • DOI: 10.1029/2006JD007340

The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges
journal, February 2015

  • Nozière, Barbara; Kalberer, Markus; Claeys, Magda
  • Chemical Reviews, Vol. 115, Issue 10
  • DOI: 10.1021/cr5003485

Gas Phase Production and Loss of Isoprene Epoxydiols
journal, February 2014

  • Bates, Kelvin H.; Crounse, John D.; St. Clair, Jason M.
  • The Journal of Physical Chemistry A, Vol. 118, Issue 7
  • DOI: 10.1021/jp4107958

On-Line Characterization of Organic Aerosols Formed from Biogenic Precursors Using Atmospheric Pressure Chemical Ionization Mass Spectrometry
journal, April 2000

  • Kückelmann, Ulrich; Warscheid, Bettina; Hoffmann, Thorsten
  • Analytical Chemistry, Vol. 72, Issue 8
  • DOI: 10.1021/ac991178a

Organosulfate Formation in Biogenic Secondary Organic Aerosol
journal, September 2008

  • Surratt, Jason D.; Gómez-González, Yadian; Chan, Arthur W. H.
  • The Journal of Physical Chemistry A, Vol. 112, Issue 36
  • DOI: 10.1021/jp802310p

Introducing the concept of Potential Aerosol Mass (PAM)
journal, January 2007

  • Kang, E.; Root, M. J.; Toohey, D. W.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 22
  • DOI: 10.5194/acp-7-5727-2007

Kinetics and Products of the Reaction of the First-Generation Isoprene Hydroxy Hydroperoxide (ISOPOOH) with OH
journal, September 2015

  • St. Clair, Jason M.; Rivera-Rios, Jean C.; Crounse, John D.
  • The Journal of Physical Chemistry A, Vol. 120, Issue 9
  • DOI: 10.1021/acs.jpca.5b06532

Reactive intermediates revealed in secondary organic aerosol formation from isoprene
journal, December 2009

  • Surratt, J. D.; Chan, A. W. H.; Eddingsaas, N. C.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 15
  • DOI: 10.1073/pnas.0911114107

Hydroxycarboxylic Acid-Derived Organosulfates: Synthesis, Stability, and Quantification in Ambient Aerosol
journal, August 2011

  • Olson, Corey N.; Galloway, Melissa M.; Yu, Ge
  • Environmental Science & Technology, Vol. 45, Issue 15
  • DOI: 10.1021/es201039p

Chemical standards in ion mobility spectrometry
journal, January 2010

  • Fernández-Maestre, Roberto; Harden, Charles Steve; Ewing, Robert Gordon
  • The Analyst, Vol. 135, Issue 6
  • DOI: 10.1039/b915202d

Statistical precision of the intensities retrieved from constrained fitting of overlapping peaks in high-resolution mass spectra
journal, January 2015


The formation, properties and impact of secondary organic aerosol: current and emerging issues
journal, January 2009

  • Hallquist, M.; Wenger, J. C.; Baltensperger, U.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 14
  • DOI: 10.5194/acp-9-5155-2009

Metabolic profiling by ion mobility mass spectrometry (IMMS)
journal, December 2007


Determination of atmospheric organosulfates using HILIC chromatography with MS detection
journal, January 2015

  • Hettiyadura, A. P. S.; Stone, E. A.; Kundu, S.
  • Atmospheric Measurement Techniques, Vol. 8, Issue 6
  • DOI: 10.5194/amt-8-2347-2015

Resistive Glass IM-TOFMS
journal, November 2010

  • Kaplan, Kimberly; Graf, Stephan; Tanner, Christian
  • Analytical Chemistry, Vol. 82, Issue 22
  • DOI: 10.1021/ac1017259

Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air
journal, January 2012


Secondary Organic Aerosol Formation from Isoprene Photooxidation
journal, March 2006

  • Kroll, Jesse H.; Ng, Nga L.; Murphy, Shane M.
  • Environmental Science & Technology, Vol. 40, Issue 6
  • DOI: 10.1021/es0524301

Modeling the Charging of Highly Oxidized Cyclohexene Ozonolysis Products Using Nitrate-Based Chemical Ionization
journal, May 2015

  • Hyttinen, Noora; Kupiainen-Määttä, Oona; Rissanen, Matti P.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 24
  • DOI: 10.1021/acs.jpca.5b01818

A large source of low-volatility secondary organic aerosol
journal, February 2014

  • Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard
  • Nature, Vol. 506, Issue 7489
  • DOI: 10.1038/nature13032

Characterization of organosulfates in atmospheric aerosols at Four Asian locations
journal, February 2012


Reactive Uptake of an Isoprene-Derived Epoxydiol to Submicron Aerosol Particles
journal, September 2014

  • Gaston, Cassandra J.; Riedel, Theran P.; Zhang, Zhenfa
  • Environmental Science & Technology, Vol. 48, Issue 19
  • DOI: 10.1021/es5034266

Evidence for Organosulfates in Secondary Organic Aerosol
journal, January 2007

  • Surratt, Jason D.; Kroll, Jesse H.; Kleindienst, Tadeusz E.
  • Environmental Science & Technology, Vol. 41, Issue 2
  • DOI: 10.1021/es062081q

Chemical Composition of Secondary Organic Aerosol Formed from the Photooxidation of Isoprene
journal, August 2006

  • Surratt, Jason D.; Murphy, Shane M.; Kroll, Jesse H.
  • The Journal of Physical Chemistry A, Vol. 110, Issue 31
  • DOI: 10.1021/jp061734m

Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets
journal, January 2016

  • Lee, Ben H.; Mohr, Claudia; Lopez-Hilfiker, Felipe D.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 6
  • DOI: 10.1073/pnas.1508108113

Heterogeneous Reactions of Isoprene-Derived Epoxides: Reaction Probabilities and Molar Secondary Organic Aerosol Yield Estimates
journal, January 2015

  • Riedel, Theran P.; Lin, Ying-Hsuan; Budisulistiorini, Sri Hapsari
  • Environmental Science & Technology Letters, Vol. 2, Issue 2
  • DOI: 10.1021/ez500406f

A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO)
journal, January 2014

  • Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.
  • Atmospheric Measurement Techniques, Vol. 7, Issue 4
  • DOI: 10.5194/amt-7-983-2014

High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids
journal, January 2015

  • Groessl, M.; Graf, S.; Knochenmuss, R.
  • The Analyst, Vol. 140, Issue 20
  • DOI: 10.1039/C5AN00838G

Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds
journal, November 2011

  • Lin, Ying-Hsuan; Zhang, Zhenfa; Docherty, Kenneth S.
  • Environmental Science & Technology, Vol. 46, Issue 1
  • DOI: 10.1021/es202554c

High spatial and temporal resolution measurements of primary organics and their oxidation products over the tropical forests of Surinam
journal, January 2000


Low-Molecular-Weight and Oligomeric Components in Secondary Organic Aerosol from the Ozonolysis of Cycloalkenes and α-Pinene
journal, November 2004

  • Gao, Song; Keywood, Melita; Ng, Nga L.
  • The Journal of Physical Chemistry A, Vol. 108, Issue 46
  • DOI: 10.1021/jp047466e

Light-Absorbing Oligomer Formation in Secondary Organic Aerosol from Reactive Uptake of Isoprene Epoxydiols
journal, October 2014

  • Lin, Ying-Hsuan; Budisulistiorini, Sri Hapsari; Chu, Kevin
  • Environmental Science & Technology, Vol. 48, Issue 20
  • DOI: 10.1021/es503142b

Development of a volatility and polarity separator (VAPS) for volatility- and polarity-resolved organic aerosol measurement
journal, January 2016


Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol
journal, April 2016


Plasma chromatography
journal, July 1974


Atmospheric pressure ionization mass spectrometry
journal, November 1977


Evaluation of Hadamard Transform Atmospheric Pressure Ion Mobility Time-of-Flight Mass Spectrometry for Complex Mixture Analysis
journal, January 2014

  • Zhang, Xing; Knochenmuss, Richard; Siems, William F.
  • Analytical Chemistry, Vol. 86, Issue 3
  • DOI: 10.1021/ac403435p

Ion mobility-mass spectrometry
journal, January 2008

  • Kanu, Abu B.; Dwivedi, Prabha; Tam, Maggie
  • Journal of Mass Spectrometry, Vol. 43, Issue 1
  • DOI: 10.1002/jms.1383

Methods to extract molecular and bulk chemical information from series of complex mass spectra with limited mass resolution
journal, October 2015

  • Stark, Harald; Yatavelli, Reddy L. N.; Thompson, Samantha L.
  • International Journal of Mass Spectrometry, Vol. 389
  • DOI: 10.1016/j.ijms.2015.08.011

Development of negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) for the measurement of gas-phase organic acids in the atmosphere
journal, July 2008

  • Veres, Patrick; Roberts, James M.; Warneke, Carsten
  • International Journal of Mass Spectrometry, Vol. 274, Issue 1-3
  • DOI: 10.1016/j.ijms.2008.04.032

P EPTIDES AND P ROTEINS IN THE V APOR P HASE
journal, October 2000


Identification of water-soluble organic carbon in non-urban aerosols using ultrahigh-resolution FT-ICR mass spectrometry: organic anions
journal, January 2012

  • Mazzoleni, Lynn R.; Saranjampour, Parichehr; Dalbec, Megan M.
  • Environmental Chemistry, Vol. 9, Issue 3
  • DOI: 10.1071/EN11167

Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF
journal, January 2012

  • Jokinen, T.; Sipilä, M.; Junninen, H.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 9
  • DOI: 10.5194/acp-12-4117-2012

Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications
journal, May 2015

  • Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 23
  • DOI: 10.1073/pnas.1423977112

Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene
journal, August 2009