skip to main content


Title: Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces

Physical geometry and optical properties of objects are correlated: cylinders focus light to a line, spheres to a point and arbitrarily shaped objects introduce optical aberrations. Multifunctional components with decoupled geometrical form and optical function are needed when specific optical functionalities must be provided while the shapes are dictated by other considerations like ergonomics, aerodynamics or aesthetics. Here we demonstrate an approach for decoupling optical properties of objects from their physical shape using thin and flexible dielectric metasurfaces which conform to objects' surface and change their optical properties. The conformal metasurfaces are composed of silicon nano-posts embedded in a polymer substrate that locally modify near-infrared (λ = 915 nm) optical wavefronts. As proof of concept, we show that cylindrical lenses covered with metasurfaces can be transformed to function as aspherical lenses focusing light to a point. Lastly, the conformal metasurface concept is highly versatile for developing arbitrarily shaped multi-functional optical devices.
 [1] ; ORCiD logo [1] ; ORCiD logo [1] ; ORCiD logo [1] ;  [1]
  1. California Inst. of Technology (CalTech), Pasadena, CA (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2041-1723
Nature Publishing Group
Research Org:
California Inst. of Technology, Pasadena, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
36 MATERIALS SCIENCE; cloak; metamaterials; wavelengths; efficiency; elements; design; lenses; skin
OSTI Identifier: